Build utilities for flask
check_existance
[source]
check_existance
()
Check if the data file exists, if not, use torch ember in your pytorch modeling first according to the short tutorial
check_existance()
True
get_ember_list
[source]
get_ember_list
()
get_ember_list()[:5]
['base_AlexNet_20200215_132629.json', 'base_AlexNet_20200226_002834.json', 'base_AlexNet_20200211_230327.json', 'base_AlexNet_20200211_192928.json', 'base_AlexNet_20200209_183014.json']
unpack_meta
[source]
unpack_meta
(fname
)
get_ember_record
[source]
get_ember_record
()
df = get_ember_df(get_ember_list())
df.head(5)
start | user | name | |
---|---|---|---|
0 | 2020-03-07 10:37:37 | salvor | AlexNet_20200307_103737 |
1 | 2020-03-07 10:35:52 | salvor | AlexNet_20200307_103552 |
2 | 2020-03-05 23:12:37 | salvor | AlexNet_20200305_231237 |
3 | 2020-03-05 23:10:04 | salvor | AlexNet_20200305_231004 |
4 | 2020-03-03 23:50:54 | salvor | AlexNet_20200303_235054 |
get_ember_record()
[{'start': '2020-03-07 10:37:37', 'user': 'salvor', 'name': 'AlexNet_20200307_103737', 'latest': 0}, {'start': '2020-03-07 10:35:52', 'user': 'salvor', 'name': 'AlexNet_20200307_103552', 'latest': 1}, {'start': '2020-03-05 23:12:37', 'user': 'salvor', 'name': 'AlexNet_20200305_231237', 'latest': 2}, {'start': '2020-03-05 23:10:04', 'user': 'salvor', 'name': 'AlexNet_20200305_231004', 'latest': 3}, {'start': '2020-03-03 23:50:54', 'user': 'salvor', 'name': 'AlexNet_20200303_235054', 'latest': 4}, {'start': '2020-03-03 23:44:40', 'user': 'salvor', 'name': 'AlexNet_20200303_234440', 'latest': 5}, {'start': '2020-03-03 23:41:30', 'user': 'salvor', 'name': 'AlexNet_20200303_234130', 'latest': 6}, {'start': '2020-03-03 23:39:23', 'user': 'salvor', 'name': 'AlexNet_20200303_233923', 'latest': 7}, {'start': '2020-02-26 00:28:34', 'user': 'salvor', 'name': 'AlexNet_20200226_002834', 'latest': 8}, {'start': '2020-02-26 00:25:28', 'user': 'salvor', 'name': 'AlexNet_20200226_002528', 'latest': 9}, {'start': '2020-02-25 08:21:27', 'user': 'salvor', 'name': 'AlexNet_20200225_082127', 'latest': 10}, {'start': '2020-02-24 23:32:07', 'user': 'salvor', 'name': 'AlexNet_20200224_233207', 'latest': 11}, {'start': '2020-02-24 23:28:27', 'user': 'salvor', 'name': 'AlexNet_20200224_232827', 'latest': 12}, {'start': '2020-02-24 22:46:54', 'user': 'salvor', 'name': 'AlexNet_20200224_224654', 'latest': 13}, {'start': '2020-02-24 21:40:30', 'user': 'salvor', 'name': 'AlexNet_20200224_214030', 'latest': 14}, {'start': '2020-02-20 00:32:06', 'user': 'salvor', 'name': 'tinyVGG_20200220_003206', 'latest': 15}, {'start': '2020-02-20 00:30:33', 'user': 'salvor', 'name': 'tinyVGG_20200220_003033', 'latest': 16}, {'start': '2020-02-20 00:28:02', 'user': 'salvor', 'name': 'tinyVGG_20200220_002802', 'latest': 17}, {'start': '2020-02-20 00:16:09', 'user': 'salvor', 'name': 'AlexNet_20200220_001609', 'latest': 18}, {'start': '2020-02-19 23:59:22', 'user': 'salvor', 'name': 'AlexNet_20200219_235922', 'latest': 19}, {'start': '2020-02-19 23:57:57', 'user': 'salvor', 'name': 'AlexNet_20200219_235757', 'latest': 20}, {'start': '2020-02-19 23:56:26', 'user': 'salvor', 'name': 'AlexNet_20200219_235626', 'latest': 21}, {'start': '2020-02-17 22:40:15', 'user': 'salvor', 'name': 'AlexNet_20200217_224015', 'latest': 22}, {'start': '2020-02-16 18:14:43', 'user': 'salvor', 'name': 'AlexNet_20200216_181443', 'latest': 23}, {'start': '2020-02-16 18:13:06', 'user': 'salvor', 'name': 'AlexNet_20200216_181306', 'latest': 24}, {'start': '2020-02-16 17:45:33', 'user': 'salvor', 'name': 'AlexNet_20200216_174533', 'latest': 25}, {'start': '2020-02-16 12:35:27', 'user': 'salvor', 'name': 'tinyVGG_20200216_123527', 'latest': 26}, {'start': '2020-02-16 12:07:42', 'user': 'salvor', 'name': 'tinyVGG_20200216_120742', 'latest': 27}, {'start': '2020-02-15 13:44:48', 'user': 'salvor', 'name': 'AlexNet_20200215_134448', 'latest': 28}, {'start': '2020-02-15 13:26:29', 'user': 'salvor', 'name': 'AlexNet_20200215_132629', 'latest': 29}, {'start': '2020-02-15 13:25:46', 'user': 'salvor', 'name': 'AlexNet_20200215_132546', 'latest': 30}, {'start': '2020-02-11 23:07:43', 'user': 'salvor', 'name': 'AlexNet_20200211_230743', 'latest': 31}, {'start': '2020-02-11 23:07:40', 'user': 'salvor', 'name': 'AlexNet_20200211_230740', 'latest': 32}, {'start': '2020-02-11 23:06:14', 'user': 'salvor', 'name': 'AlexNet_20200211_230614', 'latest': 33}, {'start': '2020-02-11 23:06:09', 'user': 'salvor', 'name': 'AlexNet_20200211_230609', 'latest': 34}, {'start': '2020-02-11 23:04:37', 'user': 'salvor', 'name': 'AlexNet_20200211_230437', 'latest': 35}, {'start': '2020-02-11 23:04:12', 'user': 'salvor', 'name': 'AlexNet_20200211_230412', 'latest': 36}, {'start': '2020-02-11 23:03:35', 'user': 'salvor', 'name': 'AlexNet_20200211_230335', 'latest': 37}, {'start': '2020-02-11 23:03:27', 'user': 'salvor', 'name': 'AlexNet_20200211_230327', 'latest': 38}, {'start': '2020-02-11 23:03:09', 'user': 'salvor', 'name': 'AlexNet_20200211_230309', 'latest': 39}, {'start': '2020-02-11 22:59:58', 'user': 'salvor', 'name': 'AlexNet_20200211_225958', 'latest': 40}, {'start': '2020-02-11 22:59:27', 'user': 'salvor', 'name': 'AlexNet_20200211_225927', 'latest': 41}, {'start': '2020-02-11 22:52:12', 'user': 'salvor', 'name': 'AlexNet_20200211_225212', 'latest': 42}, {'start': '2020-02-11 22:49:03', 'user': 'salvor', 'name': 'AlexNet_20200211_224903', 'latest': 43}, {'start': '2020-02-11 22:48:14', 'user': 'salvor', 'name': 'AlexNet_20200211_224814', 'latest': 44}, {'start': '2020-02-11 22:46:55', 'user': 'salvor', 'name': 'AlexNet_20200211_224655', 'latest': 45}, {'start': '2020-02-11 22:37:41', 'user': 'salvor', 'name': 'AlexNet_20200211_223741', 'latest': 46}, {'start': '2020-02-11 22:33:28', 'user': 'salvor', 'name': 'AlexNet_20200211_223328', 'latest': 47}, {'start': '2020-02-11 22:30:11', 'user': 'salvor', 'name': 'AlexNet_20200211_223011', 'latest': 48}, {'start': '2020-02-11 20:57:08', 'user': 'salvor', 'name': 'AlexNet_20200211_205708', 'latest': 49}, {'start': '2020-02-11 19:39:34', 'user': 'salvor', 'name': 'AlexNet_20200211_193934', 'latest': 50}, {'start': '2020-02-11 19:36:48', 'user': 'salvor', 'name': 'AlexNet_20200211_193648', 'latest': 51}, {'start': '2020-02-11 19:34:37', 'user': 'salvor', 'name': 'AlexNet_20200211_193437', 'latest': 52}, {'start': '2020-02-11 19:34:11', 'user': 'salvor', 'name': 'AlexNet_20200211_193411', 'latest': 53}, {'start': '2020-02-11 19:32:27', 'user': 'salvor', 'name': 'AlexNet_20200211_193227', 'latest': 54}, {'start': '2020-02-11 19:32:05', 'user': 'salvor', 'name': 'AlexNet_20200211_193205', 'latest': 55}, {'start': '2020-02-11 19:29:28', 'user': 'salvor', 'name': 'AlexNet_20200211_192928', 'latest': 56}, {'start': '2020-02-09 21:03:01', 'user': 'salvor', 'name': 'AlexNet_20200209_210301', 'latest': 57}, {'start': '2020-02-09 21:01:24', 'user': 'salvor', 'name': 'AlexNet_20200209_210124', 'latest': 58}, {'start': '2020-02-09 20:47:01', 'user': 'salvor', 'name': 'AlexNet_20200209_204701', 'latest': 59}, {'start': '2020-02-09 20:41:29', 'user': 'salvor', 'name': 'AlexNet_20200209_204129', 'latest': 60}, {'start': '2020-02-09 20:39:50', 'user': 'salvor', 'name': 'AlexNet_20200209_203950', 'latest': 61}, {'start': '2020-02-09 20:38:36', 'user': 'salvor', 'name': 'AlexNet_20200209_203836', 'latest': 62}, {'start': '2020-02-09 20:37:21', 'user': 'salvor', 'name': 'AlexNet_20200209_203721', 'latest': 63}, {'start': '2020-02-09 20:36:36', 'user': 'salvor', 'name': 'AlexNet_20200209_203636', 'latest': 64}, {'start': '2020-02-09 20:23:15', 'user': 'salvor', 'name': 'AlexNet_20200209_202315', 'latest': 65}, {'start': '2020-02-09 20:21:21', 'user': 'salvor', 'name': 'AlexNet_20200209_202121', 'latest': 66}, {'start': '2020-02-09 20:15:23', 'user': 'salvor', 'name': 'AlexNet_20200209_201523', 'latest': 67}, {'start': '2020-02-09 20:03:02', 'user': 'salvor', 'name': 'AlexNet_20200209_200302', 'latest': 68}, {'start': '2020-02-09 20:00:03', 'user': 'salvor', 'name': 'AlexNet_20200209_200003', 'latest': 69}, {'start': '2020-02-09 18:47:46', 'user': 'salvor', 'name': 'AlexNet_20200209_184746', 'latest': 70}, {'start': '2020-02-09 18:47:17', 'user': 'salvor', 'name': 'AlexNet_20200209_184717', 'latest': 71}, {'start': '2020-02-09 18:46:51', 'user': 'salvor', 'name': 'AlexNet_20200209_184651', 'latest': 72}, {'start': '2020-02-09 18:31:54', 'user': 'salvor', 'name': 'AlexNet_20200209_183154', 'latest': 73}, {'start': '2020-02-09 18:30:44', 'user': 'salvor', 'name': 'AlexNet_20200209_183044', 'latest': 74}, {'start': '2020-02-09 18:30:14', 'user': 'salvor', 'name': 'AlexNet_20200209_183014', 'latest': 75}, {'start': '2020-02-09 18:29:37', 'user': 'salvor', 'name': 'AlexNet_20200209_182937', 'latest': 76}, {'start': '2020-02-09 18:29:12', 'user': 'salvor', 'name': 'AlexNet_20200209_182912', 'latest': 77}, {'start': '2020-02-09 18:29:02', 'user': 'salvor', 'name': 'AlexNet_20200209_182902', 'latest': 78}, {'start': '2020-02-09 18:28:21', 'user': 'salvor', 'name': 'AlexNet_20200209_182821', 'latest': 79}]
Ember Reader¶
A reading handler to process Torch Ember data
class
emberReader
[source]
emberReader
(name
,verbose
=False
)
er = emberReader("AlexNet_20200307_103737",verbose = True)
['init-00_phase-valid_epoch-0.log', 'init-00_phase-train_epoch-0.log', 'init-00_phase-train_epoch-1.log', 'init-00_phase-valid_epoch-1.log']
er.structure
{'name': 'model(AlexNet)', 'short': 'model(AlexNet)', 'children': [{'name': 'model(AlexNet).features(Sequential)', 'short': 'features(Sequential)', 'children': [{'name': 'model(AlexNet).features(Sequential).0(Conv2d)', 'short': '0(Conv2d)'}, {'name': 'model(AlexNet).features(Sequential).1(ReLU)', 'short': '1(ReLU)'}, {'name': 'model(AlexNet).features(Sequential).2(MaxPool2d)', 'short': '2(MaxPool2d)'}, {'name': 'model(AlexNet).features(Sequential).3(Conv2d)', 'short': '3(Conv2d)'}, {'name': 'model(AlexNet).features(Sequential).4(ReLU)', 'short': '4(ReLU)'}, {'name': 'model(AlexNet).features(Sequential).5(MaxPool2d)', 'short': '5(MaxPool2d)'}, {'name': 'model(AlexNet).features(Sequential).6(Conv2d)', 'short': '6(Conv2d)'}, {'name': 'model(AlexNet).features(Sequential).7(ReLU)', 'short': '7(ReLU)'}, {'name': 'model(AlexNet).features(Sequential).8(Conv2d)', 'short': '8(Conv2d)'}, {'name': 'model(AlexNet).features(Sequential).9(ReLU)', 'short': '9(ReLU)'}, {'name': 'model(AlexNet).features(Sequential).10(Conv2d)', 'short': '10(Conv2d)'}, {'name': 'model(AlexNet).features(Sequential).11(ReLU)', 'short': '11(ReLU)'}, {'name': 'model(AlexNet).features(Sequential).12(MaxPool2d)', 'short': '12(MaxPool2d)'}]}, {'name': 'model(AlexNet).avgpool(AdaptiveAvgPool2d)', 'short': 'avgpool(AdaptiveAvgPool2d)'}, {'name': 'model(AlexNet).classifier(Sequential)', 'short': 'classifier(Sequential)', 'children': [{'name': 'model(AlexNet).classifier(Sequential).0(Dropout)', 'short': '0(Dropout)'}, {'name': 'model(AlexNet).classifier(Sequential).1(Linear)', 'short': '1(Linear)'}, {'name': 'model(AlexNet).classifier(Sequential).2(ReLU)', 'short': '2(ReLU)'}, {'name': 'model(AlexNet).classifier(Sequential).3(Dropout)', 'short': '3(Dropout)'}, {'name': 'model(AlexNet).classifier(Sequential).4(Linear)', 'short': '4(Linear)'}, {'name': 'model(AlexNet).classifier(Sequential).5(ReLU)', 'short': '5(ReLU)'}, {'name': 'model(AlexNet).classifier(Sequential).6(Linear)', 'short': '6(Linear)'}]}]}
Basical information
er.base
{'start': '2020-03-07 10:37:37', 'user': 'salvor'}
List the log files under log directory on this module task
er.t.log_files
['init-00_phase-valid_epoch-0.log', 'init-00_phase-train_epoch-0.log', 'init-00_phase-train_epoch-1.log', 'init-00_phase-valid_epoch-1.log']
Latest record as dataframe
er.t.latest_df
shape | mean | std | max | min | cnt_zero | zero_pct | module | ts | ttype | tname | n_batch | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | [2, 3, 224, 224] | -1.001885 | 0.577536 | -0.000016 | -1.999997 | 0 | 0.0 | model(AlexNet) | 2020-03-07 10:37:52 | input | x | 1 |
1 | [2, 3, 224, 224] | -1.001885 | 0.577536 | -0.000016 | -1.999997 | 0 | 0.0 | model(AlexNet).features(Sequential) | 2020-03-07 10:37:52 | input | input | 1 |
2 | [2, 3, 224, 224] | -1.001885 | 0.577536 | -0.000016 | -1.999997 | 0 | 0.0 | model(AlexNet).features(Sequential).0(Conv2d) | 2020-03-07 10:37:52 | input | input | 1 |
3 | [64, 3, 11, 11] | -0.000152 | 0.030288 | 0.052461 | -0.052483 | 0 | 0.0 | model(AlexNet).features(Sequential).0(Conv2d) | 2020-03-07 10:37:52 | weight | weight_0 | 1 |
4 | [64] | 0.003515 | 0.027836 | 0.051731 | -0.044360 | 0 | 0.0 | model(AlexNet).features(Sequential).0(Conv2d) | 2020-03-07 10:37:52 | weight | weight_1 | 1 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
59 | [1000, 4096] | 0.000008 | 0.009020 | 0.015625 | -0.015625 | 0 | 0.0 | model(AlexNet).classifier(Sequential).6(Linear) | 2020-03-07 10:37:53 | weight | weight_0 | 1 |
60 | [1000] | 0.000555 | 0.008901 | 0.015613 | -0.015598 | 0 | 0.0 | model(AlexNet).classifier(Sequential).6(Linear) | 2020-03-07 10:37:53 | weight | weight_1 | 1 |
61 | [2, 1000] | 0.000637 | 0.011510 | 0.033282 | -0.033744 | 0 | 0.0 | model(AlexNet).classifier(Sequential).6(Linear) | 2020-03-07 10:37:53 | output | output_0 | 1 |
62 | [2, 1000] | 0.000637 | 0.011510 | 0.033282 | -0.033744 | 0 | 0.0 | model(AlexNet).classifier(Sequential) | 2020-03-07 10:37:53 | output | output_0 | 1 |
63 | [2, 1000] | 0.000637 | 0.011510 | 0.033282 | -0.033744 | 0 | 0.0 | model(AlexNet) | 2020-03-07 10:37:53 | output | output_0 | 1 |
64 rows × 12 columns
Load a log file as a long list of dictionary
json.loads(er.read_log('init-00_phase-valid_epoch-1.log'))
[{'shape': [2, 3, 224, 224], 'mean': -1.001885175704956, 'std': 0.5775364637374878, 'max': -1.5735626220703125e-05, 'min': -1.9999974966049194, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet)', 'ts': '2020-03-07 10:37:50', 'ttype': 'input', 'tname': 'x', 'n_batch': 0}, {'shape': [2, 3, 224, 224], 'mean': -1.001885175704956, 'std': 0.5775364637374878, 'max': -1.5735626220703125e-05, 'min': -1.9999974966049194, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential)', 'ts': '2020-03-07 10:37:50', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [2, 3, 224, 224], 'mean': -1.001885175704956, 'std': 0.5775364637374878, 'max': -1.5735626220703125e-05, 'min': -1.9999974966049194, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).0(Conv2d)', 'ts': '2020-03-07 10:37:50', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [64, 3, 11, 11], 'mean': -0.000151715605170466, 'std': 0.03028801828622818, 'max': 0.05246129631996155, 'min': -0.05248286575078964, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).0(Conv2d)', 'ts': '2020-03-07 10:37:50', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 0}, {'shape': [64], 'mean': 0.003515456337481737, 'std': 0.027836013585329056, 'max': 0.0517314150929451, 'min': -0.04436026141047478, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).0(Conv2d)', 'ts': '2020-03-07 10:37:50', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 0}, {'shape': [2, 64, 55, 55], 'mean': 0.058029815554618835, 'std': 0.6799391508102417, 'max': 2.8890106678009033, 'min': -2.7371437549591064, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).0(Conv2d)', 'ts': '2020-03-07 10:37:50', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 64, 55, 55], 'mean': 0.058029815554618835, 'std': 0.6799391508102417, 'max': 2.8890106678009033, 'min': -2.7371437549591064, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).1(ReLU)', 'ts': '2020-03-07 10:37:50', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [2, 64, 55, 55], 'mean': 0.2949860095977783, 'std': 0.4212140142917633, 'max': 2.8890106678009033, 'min': 0.0, 'cnt_zero': 179115, 'zero_pct': 0.4625903925619835, 'module': 'model(AlexNet).features(Sequential).1(ReLU)', 'ts': '2020-03-07 10:37:50', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 64, 55, 55], 'mean': 0.2949860095977783, 'std': 0.4212140142917633, 'max': 2.8890106678009033, 'min': 0.0, 'cnt_zero': 179115, 'zero_pct': 0.4625903925619835, 'module': 'model(AlexNet).features(Sequential).2(MaxPool2d)', 'ts': '2020-03-07 10:37:50', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [2, 64, 27, 27], 'mean': 0.6178204417228699, 'std': 0.5235710144042969, 'max': 2.8890106678009033, 'min': 0.0, 'cnt_zero': 16626, 'zero_pct': 0.17817644032921812, 'module': 'model(AlexNet).features(Sequential).2(MaxPool2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 64, 27, 27], 'mean': 0.6178204417228699, 'std': 0.5235710144042969, 'max': 2.8890106678009033, 'min': 0.0, 'cnt_zero': 16626, 'zero_pct': 0.17817644032921812, 'module': 'model(AlexNet).features(Sequential).3(Conv2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [192, 64, 5, 5], 'mean': 2.920041879406199e-05, 'std': 0.014425805769860744, 'max': 0.024999992921948433, 'min': -0.024999914690852165, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).3(Conv2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 0}, {'shape': [192], 'mean': 5.584982500295155e-05, 'std': 0.01449640840291977, 'max': 0.02486034296452999, 'min': -0.024976877495646477, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).3(Conv2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 0}, {'shape': [2, 192, 27, 27], 'mean': 0.005711908917874098, 'std': 0.4219861924648285, 'max': 1.3408710956573486, 'min': -1.5709540843963623, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).3(Conv2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 192, 27, 27], 'mean': 0.005711908917874098, 'std': 0.4219861924648285, 'max': 1.3408710956573486, 'min': -1.5709540843963623, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).4(ReLU)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [2, 192, 27, 27], 'mean': 0.1750352382659912, 'std': 0.24230045080184937, 'max': 1.3408710956573486, 'min': 0.0, 'cnt_zero': 136728, 'zero_pct': 0.48842592592592593, 'module': 'model(AlexNet).features(Sequential).4(ReLU)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 192, 27, 27], 'mean': 0.1750352382659912, 'std': 0.24230045080184937, 'max': 1.3408710956573486, 'min': 0.0, 'cnt_zero': 136728, 'zero_pct': 0.48842592592592593, 'module': 'model(AlexNet).features(Sequential).5(MaxPool2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [2, 192, 13, 13], 'mean': 0.2699883282184601, 'std': 0.29403892159461975, 'max': 1.3408710956573486, 'min': 0.0, 'cnt_zero': 22632, 'zero_pct': 0.34874260355029585, 'module': 'model(AlexNet).features(Sequential).5(MaxPool2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 192, 13, 13], 'mean': 0.2699883282184601, 'std': 0.29403892159461975, 'max': 1.3408710956573486, 'min': 0.0, 'cnt_zero': 22632, 'zero_pct': 0.34874260355029585, 'module': 'model(AlexNet).features(Sequential).6(Conv2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [384, 192, 3, 3], 'mean': -1.0054035556095187e-05, 'std': 0.013890313915908337, 'max': 0.02405625395476818, 'min': -0.024056246504187584, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).6(Conv2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 0}, {'shape': [384], 'mean': -0.00042058341205120087, 'std': 0.013936573639512062, 'max': 0.02394459955394268, 'min': -0.023925118148326874, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).6(Conv2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 0}, {'shape': [2, 384, 13, 13], 'mean': -0.008931996300816536, 'std': 0.2149755209684372, 'max': 0.7376869916915894, 'min': -0.7926941514015198, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).6(Conv2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 384, 13, 13], 'mean': -0.008931996300816536, 'std': 0.2149755209684372, 'max': 0.7376869916915894, 'min': -0.7926941514015198, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).7(ReLU)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [2, 384, 13, 13], 'mean': 0.08150506764650345, 'std': 0.122230164706707, 'max': 0.7376869916915894, 'min': 0.0, 'cnt_zero': 67078, 'zero_pct': 0.5168115138067061, 'module': 'model(AlexNet).features(Sequential).7(ReLU)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 384, 13, 13], 'mean': 0.08150506764650345, 'std': 0.122230164706707, 'max': 0.7376869916915894, 'min': 0.0, 'cnt_zero': 67078, 'zero_pct': 0.5168115138067061, 'module': 'model(AlexNet).features(Sequential).8(Conv2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [256, 384, 3, 3], 'mean': 1.5411440472234972e-05, 'std': 0.009823623113334179, 'max': 0.017010334879159927, 'min': -0.017010342329740524, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).8(Conv2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 0}, {'shape': [256], 'mean': 0.0004253720981068909, 'std': 0.009670977480709553, 'max': 0.016636833548545837, 'min': -0.016954980790615082, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).8(Conv2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 0}, {'shape': [2, 256, 13, 13], 'mean': 0.0047131311148405075, 'std': 0.08358980715274811, 'max': 0.33009663224220276, 'min': -0.3189106583595276, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).8(Conv2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 256, 13, 13], 'mean': 0.0047131311148405075, 'std': 0.08358980715274811, 'max': 0.33009663224220276, 'min': -0.3189106583595276, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).9(ReLU)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [2, 256, 13, 13], 'mean': 0.03535669669508934, 'std': 0.0499359592795372, 'max': 0.33009663224220276, 'min': 0.0, 'cnt_zero': 41035, 'zero_pct': 0.4742395525147929, 'module': 'model(AlexNet).features(Sequential).9(ReLU)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 256, 13, 13], 'mean': 0.03535669669508934, 'std': 0.0499359592795372, 'max': 0.33009663224220276, 'min': 0.0, 'cnt_zero': 41035, 'zero_pct': 0.4742395525147929, 'module': 'model(AlexNet).features(Sequential).10(Conv2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [256, 256, 3, 3], 'mean': 2.6003770472016186e-05, 'std': 0.012027072720229626, 'max': 0.020833326503634453, 'min': -0.020833313465118408, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).10(Conv2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 0}, {'shape': [256], 'mean': 0.00011942532728426158, 'std': 0.012175926938652992, 'max': 0.020765984430909157, 'min': -0.02049778774380684, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).10(Conv2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 0}, {'shape': [2, 256, 13, 13], 'mean': 0.0005038615199737251, 'std': 0.03571150824427605, 'max': 0.12614856660366058, 'min': -0.13716860115528107, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).10(Conv2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 256, 13, 13], 'mean': 0.0005038615199737251, 'std': 0.03571150824427605, 'max': 0.12614856660366058, 'min': -0.13716860115528107, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).11(ReLU)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [2, 256, 13, 13], 'mean': 0.014308960177004337, 'std': 0.02128779888153076, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 43223, 'zero_pct': 0.4995261649408284, 'module': 'model(AlexNet).features(Sequential).11(ReLU)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 256, 13, 13], 'mean': 0.014308960177004337, 'std': 0.02128779888153076, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 43223, 'zero_pct': 0.4995261649408284, 'module': 'model(AlexNet).features(Sequential).12(MaxPool2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [2, 256, 6, 6], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).features(Sequential).12(MaxPool2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 256, 6, 6], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).features(Sequential)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 256, 6, 6], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).avgpool(AdaptiveAvgPool2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [2, 256, 6, 6], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).avgpool(AdaptiveAvgPool2d)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 9216], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).classifier(Sequential)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [2, 9216], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).classifier(Sequential).0(Dropout)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [2, 9216], 'mean': 0.021722903475165367, 'std': 0.04194366931915283, 'max': 0.2518007457256317, 'min': 0.0, 'cnt_zero': 12470, 'zero_pct': 0.6765407986111112, 'module': 'model(AlexNet).classifier(Sequential).0(Dropout)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 9216], 'mean': 0.021722903475165367, 'std': 0.04194366931915283, 'max': 0.2518007457256317, 'min': 0.0, 'cnt_zero': 12470, 'zero_pct': 0.6765407986111112, 'module': 'model(AlexNet).classifier(Sequential).1(Linear)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [4096, 9216], 'mean': 8.854000839164655e-07, 'std': 0.006014422979205847, 'max': 0.010416665114462376, 'min': -0.010416666977107525, 'cnt_zero': 1, 'zero_pct': 2.6490953233506943e-08, 'module': 'model(AlexNet).classifier(Sequential).1(Linear)', 'ts': '2020-03-07 10:37:51', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 0}, {'shape': [4096], 'mean': -4.447995888767764e-05, 'std': 0.0060094729997217655, 'max': 0.010400851257145405, 'min': -0.010413545183837414, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).1(Linear)', 'ts': '2020-03-07 10:37:51', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 0}, {'shape': [2, 4096], 'mean': 0.00023734159185551107, 'std': 0.02741725742816925, 'max': 0.09106789529323578, 'min': -0.10247291624546051, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).1(Linear)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 4096], 'mean': 0.00023734159185551107, 'std': 0.02741725742816925, 'max': 0.09106789529323578, 'min': -0.10247291624546051, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).2(ReLU)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [2, 4096], 'mean': 0.011032940819859505, 'std': 0.016011307016015053, 'max': 0.09106789529323578, 'min': 0.0, 'cnt_zero': 4063, 'zero_pct': 0.4959716796875, 'module': 'model(AlexNet).classifier(Sequential).2(ReLU)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 4096], 'mean': 0.011032940819859505, 'std': 0.016011307016015053, 'max': 0.09106789529323578, 'min': 0.0, 'cnt_zero': 4063, 'zero_pct': 0.4959716796875, 'module': 'model(AlexNet).classifier(Sequential).3(Dropout)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [2, 4096], 'mean': 0.01122759748250246, 'std': 0.025463327765464783, 'max': 0.18213579058647156, 'min': 0.0, 'cnt_zero': 6124, 'zero_pct': 0.74755859375, 'module': 'model(AlexNet).classifier(Sequential).3(Dropout)', 'ts': '2020-03-07 10:37:51', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 4096], 'mean': 0.01122759748250246, 'std': 0.025463327765464783, 'max': 0.18213579058647156, 'min': 0.0, 'cnt_zero': 6124, 'zero_pct': 0.74755859375, 'module': 'model(AlexNet).classifier(Sequential).4(Linear)', 'ts': '2020-03-07 10:37:51', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [4096, 4096], 'mean': 2.2561544028576463e-06, 'std': 0.00902175810188055, 'max': 0.01562499813735485, 'min': -0.01562499813735485, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).4(Linear)', 'ts': '2020-03-07 10:37:51', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 0}, {'shape': [4096], 'mean': -0.00025126454420387745, 'std': 0.009119285270571709, 'max': 0.01561034843325615, 'min': -0.015622705221176147, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).4(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 0}, {'shape': [2, 4096], 'mean': -3.335143264848739e-05, 'std': 0.018526341766119003, 'max': 0.06954209506511688, 'min': -0.06549615412950516, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).4(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 4096], 'mean': -3.335143264848739e-05, 'std': 0.018526341766119003, 'max': 0.06954209506511688, 'min': -0.06549615412950516, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).5(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [2, 4096], 'mean': 0.007406808901578188, 'std': 0.010857083834707737, 'max': 0.06954209506511688, 'min': 0.0, 'cnt_zero': 4122, 'zero_pct': 0.503173828125, 'module': 'model(AlexNet).classifier(Sequential).5(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 4096], 'mean': 0.007406808901578188, 'std': 0.010857083834707737, 'max': 0.06954209506511688, 'min': 0.0, 'cnt_zero': 4122, 'zero_pct': 0.503173828125, 'module': 'model(AlexNet).classifier(Sequential).6(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 0}, {'shape': [1000, 4096], 'mean': 7.572847152914619e-06, 'std': 0.009020469151437283, 'max': 0.015624983236193657, 'min': -0.015624994412064552, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).6(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 0}, {'shape': [1000], 'mean': 0.0005548058543354273, 'std': 0.008900988847017288, 'max': 0.015612822026014328, 'min': -0.015597641468048096, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).6(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 0}, {'shape': [2, 1000], 'mean': 0.0009677497437223792, 'std': 0.011631517671048641, 'max': 0.03033626265823841, 'min': -0.03496428206562996, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).6(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 1000], 'mean': 0.0009677497437223792, 'std': 0.011631517671048641, 'max': 0.03033626265823841, 'min': -0.03496428206562996, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 1000], 'mean': 0.0009677497437223792, 'std': 0.011631517671048641, 'max': 0.03033626265823841, 'min': -0.03496428206562996, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 0}, {'shape': [2, 3, 224, 224], 'mean': -1.001885175704956, 'std': 0.5775364637374878, 'max': -1.5735626220703125e-05, 'min': -1.9999974966049194, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'x', 'n_batch': 1}, {'shape': [2, 3, 224, 224], 'mean': -1.001885175704956, 'std': 0.5775364637374878, 'max': -1.5735626220703125e-05, 'min': -1.9999974966049194, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 3, 224, 224], 'mean': -1.001885175704956, 'std': 0.5775364637374878, 'max': -1.5735626220703125e-05, 'min': -1.9999974966049194, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).0(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [64, 3, 11, 11], 'mean': -0.000151715605170466, 'std': 0.03028801828622818, 'max': 0.05246129631996155, 'min': -0.05248286575078964, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).0(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 1}, {'shape': [64], 'mean': 0.003515456337481737, 'std': 0.027836013585329056, 'max': 0.0517314150929451, 'min': -0.04436026141047478, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).0(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 1}, {'shape': [2, 64, 55, 55], 'mean': 0.058029815554618835, 'std': 0.6799391508102417, 'max': 2.8890106678009033, 'min': -2.7371437549591064, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).0(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 64, 55, 55], 'mean': 0.058029815554618835, 'std': 0.6799391508102417, 'max': 2.8890106678009033, 'min': -2.7371437549591064, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).1(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 64, 55, 55], 'mean': 0.2949860095977783, 'std': 0.4212140142917633, 'max': 2.8890106678009033, 'min': 0.0, 'cnt_zero': 179115, 'zero_pct': 0.4625903925619835, 'module': 'model(AlexNet).features(Sequential).1(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 64, 55, 55], 'mean': 0.2949860095977783, 'std': 0.4212140142917633, 'max': 2.8890106678009033, 'min': 0.0, 'cnt_zero': 179115, 'zero_pct': 0.4625903925619835, 'module': 'model(AlexNet).features(Sequential).2(MaxPool2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 64, 27, 27], 'mean': 0.6178204417228699, 'std': 0.5235710144042969, 'max': 2.8890106678009033, 'min': 0.0, 'cnt_zero': 16626, 'zero_pct': 0.17817644032921812, 'module': 'model(AlexNet).features(Sequential).2(MaxPool2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 64, 27, 27], 'mean': 0.6178204417228699, 'std': 0.5235710144042969, 'max': 2.8890106678009033, 'min': 0.0, 'cnt_zero': 16626, 'zero_pct': 0.17817644032921812, 'module': 'model(AlexNet).features(Sequential).3(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [192, 64, 5, 5], 'mean': 2.920041879406199e-05, 'std': 0.014425805769860744, 'max': 0.024999992921948433, 'min': -0.024999914690852165, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).3(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 1}, {'shape': [192], 'mean': 5.584982500295155e-05, 'std': 0.01449640840291977, 'max': 0.02486034296452999, 'min': -0.024976877495646477, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).3(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 1}, {'shape': [2, 192, 27, 27], 'mean': 0.005711908917874098, 'std': 0.4219861924648285, 'max': 1.3408710956573486, 'min': -1.5709540843963623, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).3(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 192, 27, 27], 'mean': 0.005711908917874098, 'std': 0.4219861924648285, 'max': 1.3408710956573486, 'min': -1.5709540843963623, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).4(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 192, 27, 27], 'mean': 0.1750352382659912, 'std': 0.24230045080184937, 'max': 1.3408710956573486, 'min': 0.0, 'cnt_zero': 136728, 'zero_pct': 0.48842592592592593, 'module': 'model(AlexNet).features(Sequential).4(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 192, 27, 27], 'mean': 0.1750352382659912, 'std': 0.24230045080184937, 'max': 1.3408710956573486, 'min': 0.0, 'cnt_zero': 136728, 'zero_pct': 0.48842592592592593, 'module': 'model(AlexNet).features(Sequential).5(MaxPool2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 192, 13, 13], 'mean': 0.2699883282184601, 'std': 0.29403892159461975, 'max': 1.3408710956573486, 'min': 0.0, 'cnt_zero': 22632, 'zero_pct': 0.34874260355029585, 'module': 'model(AlexNet).features(Sequential).5(MaxPool2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 192, 13, 13], 'mean': 0.2699883282184601, 'std': 0.29403892159461975, 'max': 1.3408710956573486, 'min': 0.0, 'cnt_zero': 22632, 'zero_pct': 0.34874260355029585, 'module': 'model(AlexNet).features(Sequential).6(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [384, 192, 3, 3], 'mean': -1.0054035556095187e-05, 'std': 0.013890313915908337, 'max': 0.02405625395476818, 'min': -0.024056246504187584, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).6(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 1}, {'shape': [384], 'mean': -0.00042058341205120087, 'std': 0.013936573639512062, 'max': 0.02394459955394268, 'min': -0.023925118148326874, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).6(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 1}, {'shape': [2, 384, 13, 13], 'mean': -0.008931996300816536, 'std': 0.2149755209684372, 'max': 0.7376869916915894, 'min': -0.7926941514015198, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).6(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 384, 13, 13], 'mean': -0.008931996300816536, 'std': 0.2149755209684372, 'max': 0.7376869916915894, 'min': -0.7926941514015198, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).7(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 384, 13, 13], 'mean': 0.08150506764650345, 'std': 0.122230164706707, 'max': 0.7376869916915894, 'min': 0.0, 'cnt_zero': 67078, 'zero_pct': 0.5168115138067061, 'module': 'model(AlexNet).features(Sequential).7(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 384, 13, 13], 'mean': 0.08150506764650345, 'std': 0.122230164706707, 'max': 0.7376869916915894, 'min': 0.0, 'cnt_zero': 67078, 'zero_pct': 0.5168115138067061, 'module': 'model(AlexNet).features(Sequential).8(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [256, 384, 3, 3], 'mean': 1.5411440472234972e-05, 'std': 0.009823623113334179, 'max': 0.017010334879159927, 'min': -0.017010342329740524, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).8(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 1}, {'shape': [256], 'mean': 0.0004253720981068909, 'std': 0.009670977480709553, 'max': 0.016636833548545837, 'min': -0.016954980790615082, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).8(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 1}, {'shape': [2, 256, 13, 13], 'mean': 0.0047131311148405075, 'std': 0.08358980715274811, 'max': 0.33009663224220276, 'min': -0.3189106583595276, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).8(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 256, 13, 13], 'mean': 0.0047131311148405075, 'std': 0.08358980715274811, 'max': 0.33009663224220276, 'min': -0.3189106583595276, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).9(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 256, 13, 13], 'mean': 0.03535669669508934, 'std': 0.0499359592795372, 'max': 0.33009663224220276, 'min': 0.0, 'cnt_zero': 41035, 'zero_pct': 0.4742395525147929, 'module': 'model(AlexNet).features(Sequential).9(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 256, 13, 13], 'mean': 0.03535669669508934, 'std': 0.0499359592795372, 'max': 0.33009663224220276, 'min': 0.0, 'cnt_zero': 41035, 'zero_pct': 0.4742395525147929, 'module': 'model(AlexNet).features(Sequential).10(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [256, 256, 3, 3], 'mean': 2.6003770472016186e-05, 'std': 0.012027072720229626, 'max': 0.020833326503634453, 'min': -0.020833313465118408, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).10(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 1}, {'shape': [256], 'mean': 0.00011942532728426158, 'std': 0.012175926938652992, 'max': 0.020765984430909157, 'min': -0.02049778774380684, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).10(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 1}, {'shape': [2, 256, 13, 13], 'mean': 0.0005038615199737251, 'std': 0.03571150824427605, 'max': 0.12614856660366058, 'min': -0.13716860115528107, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).10(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 256, 13, 13], 'mean': 0.0005038615199737251, 'std': 0.03571150824427605, 'max': 0.12614856660366058, 'min': -0.13716860115528107, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).11(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 256, 13, 13], 'mean': 0.014308960177004337, 'std': 0.02128779888153076, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 43223, 'zero_pct': 0.4995261649408284, 'module': 'model(AlexNet).features(Sequential).11(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 256, 13, 13], 'mean': 0.014308960177004337, 'std': 0.02128779888153076, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 43223, 'zero_pct': 0.4995261649408284, 'module': 'model(AlexNet).features(Sequential).12(MaxPool2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 256, 6, 6], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).features(Sequential).12(MaxPool2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 256, 6, 6], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).features(Sequential)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 256, 6, 6], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).avgpool(AdaptiveAvgPool2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 256, 6, 6], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).avgpool(AdaptiveAvgPool2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 9216], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).classifier(Sequential)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 9216], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).classifier(Sequential).0(Dropout)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 9216], 'mean': 0.02170110121369362, 'std': 0.04205140098929405, 'max': 0.2518007457256317, 'min': 0.0, 'cnt_zero': 12475, 'zero_pct': 0.6768120659722222, 'module': 'model(AlexNet).classifier(Sequential).0(Dropout)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 9216], 'mean': 0.02170110121369362, 'std': 0.04205140098929405, 'max': 0.2518007457256317, 'min': 0.0, 'cnt_zero': 12475, 'zero_pct': 0.6768120659722222, 'module': 'model(AlexNet).classifier(Sequential).1(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [4096, 9216], 'mean': 8.854000839164655e-07, 'std': 0.006014422979205847, 'max': 0.010416665114462376, 'min': -0.010416666977107525, 'cnt_zero': 1, 'zero_pct': 2.6490953233506943e-08, 'module': 'model(AlexNet).classifier(Sequential).1(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 1}, {'shape': [4096], 'mean': -4.447995888767764e-05, 'std': 0.0060094729997217655, 'max': 0.010400851257145405, 'min': -0.010413545183837414, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).1(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 1}, {'shape': [2, 4096], 'mean': -0.00019571068696677685, 'std': 0.02773861587047577, 'max': 0.11280506104230881, 'min': -0.11589439958333969, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).1(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 4096], 'mean': -0.00019571068696677685, 'std': 0.02773861587047577, 'max': 0.11280506104230881, 'min': -0.11589439958333969, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).2(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 4096], 'mean': 0.010946482419967651, 'std': 0.016068648546934128, 'max': 0.11280506104230881, 'min': 0.0, 'cnt_zero': 4088, 'zero_pct': 0.4990234375, 'module': 'model(AlexNet).classifier(Sequential).2(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 4096], 'mean': 0.010946482419967651, 'std': 0.016068648546934128, 'max': 0.11280506104230881, 'min': 0.0, 'cnt_zero': 4088, 'zero_pct': 0.4990234375, 'module': 'model(AlexNet).classifier(Sequential).3(Dropout)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 4096], 'mean': 0.010910511948168278, 'std': 0.025273488834500313, 'max': 0.22561012208461761, 'min': 0.0, 'cnt_zero': 6143, 'zero_pct': 0.7498779296875, 'module': 'model(AlexNet).classifier(Sequential).3(Dropout)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 4096], 'mean': 0.010910511948168278, 'std': 0.025273488834500313, 'max': 0.22561012208461761, 'min': 0.0, 'cnt_zero': 6143, 'zero_pct': 0.7498779296875, 'module': 'model(AlexNet).classifier(Sequential).4(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [4096, 4096], 'mean': 2.2561544028576463e-06, 'std': 0.00902175810188055, 'max': 0.01562499813735485, 'min': -0.01562499813735485, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).4(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 1}, {'shape': [4096], 'mean': -0.00025126454420387745, 'std': 0.009119285270571709, 'max': 0.01561034843325615, 'min': -0.015622705221176147, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).4(Linear)', 'ts': '2020-03-07 10:37:53', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 1}, {'shape': [2, 4096], 'mean': -0.0001800916506908834, 'std': 0.018164895474910736, 'max': 0.0790843740105629, 'min': -0.06692799180746078, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).4(Linear)', 'ts': '2020-03-07 10:37:53', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 4096], 'mean': -0.0001800916506908834, 'std': 0.018164895474910736, 'max': 0.0790843740105629, 'min': -0.06692799180746078, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).5(ReLU)', 'ts': '2020-03-07 10:37:53', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 4096], 'mean': 0.007168028503656387, 'std': 0.010531177744269371, 'max': 0.0790843740105629, 'min': 0.0, 'cnt_zero': 4132, 'zero_pct': 0.50439453125, 'module': 'model(AlexNet).classifier(Sequential).5(ReLU)', 'ts': '2020-03-07 10:37:53', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 4096], 'mean': 0.007168028503656387, 'std': 0.010531177744269371, 'max': 0.0790843740105629, 'min': 0.0, 'cnt_zero': 4132, 'zero_pct': 0.50439453125, 'module': 'model(AlexNet).classifier(Sequential).6(Linear)', 'ts': '2020-03-07 10:37:53', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [1000, 4096], 'mean': 7.572847152914619e-06, 'std': 0.009020469151437283, 'max': 0.015624983236193657, 'min': -0.015624994412064552, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).6(Linear)', 'ts': '2020-03-07 10:37:53', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 1}, {'shape': [1000], 'mean': 0.0005548058543354273, 'std': 0.008900988847017288, 'max': 0.015612822026014328, 'min': -0.015597641468048096, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).6(Linear)', 'ts': '2020-03-07 10:37:53', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 1}, {'shape': [2, 1000], 'mean': 0.0006374760414473712, 'std': 0.011509544216096401, 'max': 0.03328176215291023, 'min': -0.033743541687726974, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).6(Linear)', 'ts': '2020-03-07 10:37:53', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 1000], 'mean': 0.0006374760414473712, 'std': 0.011509544216096401, 'max': 0.03328176215291023, 'min': -0.033743541687726974, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential)', 'ts': '2020-03-07 10:37:53', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 1000], 'mean': 0.0006374760414473712, 'std': 0.011509544216096401, 'max': 0.03328176215291023, 'min': -0.033743541687726974, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet)', 'ts': '2020-03-07 10:37:53', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}]
Return log file as dataframe
er.json_df('init-00_phase-valid_epoch-1.log')
shape | mean | std | max | min | cnt_zero | zero_pct | module | ts | ttype | tname | n_batch | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | [2, 3, 224, 224] | -1.001885 | 0.577536 | -0.000016 | -1.999997 | 0 | 0.0 | model(AlexNet) | 2020-03-07 10:37:50 | input | x | 0 |
1 | [2, 3, 224, 224] | -1.001885 | 0.577536 | -0.000016 | -1.999997 | 0 | 0.0 | model(AlexNet).features(Sequential) | 2020-03-07 10:37:50 | input | input | 0 |
2 | [2, 3, 224, 224] | -1.001885 | 0.577536 | -0.000016 | -1.999997 | 0 | 0.0 | model(AlexNet).features(Sequential).0(Conv2d) | 2020-03-07 10:37:50 | input | input | 0 |
3 | [64, 3, 11, 11] | -0.000152 | 0.030288 | 0.052461 | -0.052483 | 0 | 0.0 | model(AlexNet).features(Sequential).0(Conv2d) | 2020-03-07 10:37:50 | weight | weight_0 | 0 |
4 | [64] | 0.003515 | 0.027836 | 0.051731 | -0.044360 | 0 | 0.0 | model(AlexNet).features(Sequential).0(Conv2d) | 2020-03-07 10:37:50 | weight | weight_1 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
123 | [1000, 4096] | 0.000008 | 0.009020 | 0.015625 | -0.015625 | 0 | 0.0 | model(AlexNet).classifier(Sequential).6(Linear) | 2020-03-07 10:37:53 | weight | weight_0 | 1 |
124 | [1000] | 0.000555 | 0.008901 | 0.015613 | -0.015598 | 0 | 0.0 | model(AlexNet).classifier(Sequential).6(Linear) | 2020-03-07 10:37:53 | weight | weight_1 | 1 |
125 | [2, 1000] | 0.000637 | 0.011510 | 0.033282 | -0.033744 | 0 | 0.0 | model(AlexNet).classifier(Sequential).6(Linear) | 2020-03-07 10:37:53 | output | output_0 | 1 |
126 | [2, 1000] | 0.000637 | 0.011510 | 0.033282 | -0.033744 | 0 | 0.0 | model(AlexNet).classifier(Sequential) | 2020-03-07 10:37:53 | output | output_0 | 1 |
127 | [2, 1000] | 0.000637 | 0.011510 | 0.033282 | -0.033744 | 0 | 0.0 | model(AlexNet) | 2020-03-07 10:37:53 | output | output_0 | 1 |
128 rows × 12 columns
Latest JSON data
er.latest
[{'shape': [2, 3, 224, 224], 'mean': -1.001885175704956, 'std': 0.5775364637374878, 'max': -1.5735626220703125e-05, 'min': -1.9999974966049194, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'x', 'n_batch': 1}, {'shape': [2, 3, 224, 224], 'mean': -1.001885175704956, 'std': 0.5775364637374878, 'max': -1.5735626220703125e-05, 'min': -1.9999974966049194, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 3, 224, 224], 'mean': -1.001885175704956, 'std': 0.5775364637374878, 'max': -1.5735626220703125e-05, 'min': -1.9999974966049194, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).0(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [64, 3, 11, 11], 'mean': -0.000151715605170466, 'std': 0.03028801828622818, 'max': 0.05246129631996155, 'min': -0.05248286575078964, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).0(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 1}, {'shape': [64], 'mean': 0.003515456337481737, 'std': 0.027836013585329056, 'max': 0.0517314150929451, 'min': -0.04436026141047478, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).0(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 1}, {'shape': [2, 64, 55, 55], 'mean': 0.058029815554618835, 'std': 0.6799391508102417, 'max': 2.8890106678009033, 'min': -2.7371437549591064, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).0(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 64, 55, 55], 'mean': 0.058029815554618835, 'std': 0.6799391508102417, 'max': 2.8890106678009033, 'min': -2.7371437549591064, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).1(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 64, 55, 55], 'mean': 0.2949860095977783, 'std': 0.4212140142917633, 'max': 2.8890106678009033, 'min': 0.0, 'cnt_zero': 179115, 'zero_pct': 0.4625903925619835, 'module': 'model(AlexNet).features(Sequential).1(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 64, 55, 55], 'mean': 0.2949860095977783, 'std': 0.4212140142917633, 'max': 2.8890106678009033, 'min': 0.0, 'cnt_zero': 179115, 'zero_pct': 0.4625903925619835, 'module': 'model(AlexNet).features(Sequential).2(MaxPool2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 64, 27, 27], 'mean': 0.6178204417228699, 'std': 0.5235710144042969, 'max': 2.8890106678009033, 'min': 0.0, 'cnt_zero': 16626, 'zero_pct': 0.17817644032921812, 'module': 'model(AlexNet).features(Sequential).2(MaxPool2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 64, 27, 27], 'mean': 0.6178204417228699, 'std': 0.5235710144042969, 'max': 2.8890106678009033, 'min': 0.0, 'cnt_zero': 16626, 'zero_pct': 0.17817644032921812, 'module': 'model(AlexNet).features(Sequential).3(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [192, 64, 5, 5], 'mean': 2.920041879406199e-05, 'std': 0.014425805769860744, 'max': 0.024999992921948433, 'min': -0.024999914690852165, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).3(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 1}, {'shape': [192], 'mean': 5.584982500295155e-05, 'std': 0.01449640840291977, 'max': 0.02486034296452999, 'min': -0.024976877495646477, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).3(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 1}, {'shape': [2, 192, 27, 27], 'mean': 0.005711908917874098, 'std': 0.4219861924648285, 'max': 1.3408710956573486, 'min': -1.5709540843963623, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).3(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 192, 27, 27], 'mean': 0.005711908917874098, 'std': 0.4219861924648285, 'max': 1.3408710956573486, 'min': -1.5709540843963623, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).4(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 192, 27, 27], 'mean': 0.1750352382659912, 'std': 0.24230045080184937, 'max': 1.3408710956573486, 'min': 0.0, 'cnt_zero': 136728, 'zero_pct': 0.48842592592592593, 'module': 'model(AlexNet).features(Sequential).4(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 192, 27, 27], 'mean': 0.1750352382659912, 'std': 0.24230045080184937, 'max': 1.3408710956573486, 'min': 0.0, 'cnt_zero': 136728, 'zero_pct': 0.48842592592592593, 'module': 'model(AlexNet).features(Sequential).5(MaxPool2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 192, 13, 13], 'mean': 0.2699883282184601, 'std': 0.29403892159461975, 'max': 1.3408710956573486, 'min': 0.0, 'cnt_zero': 22632, 'zero_pct': 0.34874260355029585, 'module': 'model(AlexNet).features(Sequential).5(MaxPool2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 192, 13, 13], 'mean': 0.2699883282184601, 'std': 0.29403892159461975, 'max': 1.3408710956573486, 'min': 0.0, 'cnt_zero': 22632, 'zero_pct': 0.34874260355029585, 'module': 'model(AlexNet).features(Sequential).6(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [384, 192, 3, 3], 'mean': -1.0054035556095187e-05, 'std': 0.013890313915908337, 'max': 0.02405625395476818, 'min': -0.024056246504187584, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).6(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 1}, {'shape': [384], 'mean': -0.00042058341205120087, 'std': 0.013936573639512062, 'max': 0.02394459955394268, 'min': -0.023925118148326874, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).6(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 1}, {'shape': [2, 384, 13, 13], 'mean': -0.008931996300816536, 'std': 0.2149755209684372, 'max': 0.7376869916915894, 'min': -0.7926941514015198, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).6(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 384, 13, 13], 'mean': -0.008931996300816536, 'std': 0.2149755209684372, 'max': 0.7376869916915894, 'min': -0.7926941514015198, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).7(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 384, 13, 13], 'mean': 0.08150506764650345, 'std': 0.122230164706707, 'max': 0.7376869916915894, 'min': 0.0, 'cnt_zero': 67078, 'zero_pct': 0.5168115138067061, 'module': 'model(AlexNet).features(Sequential).7(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 384, 13, 13], 'mean': 0.08150506764650345, 'std': 0.122230164706707, 'max': 0.7376869916915894, 'min': 0.0, 'cnt_zero': 67078, 'zero_pct': 0.5168115138067061, 'module': 'model(AlexNet).features(Sequential).8(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [256, 384, 3, 3], 'mean': 1.5411440472234972e-05, 'std': 0.009823623113334179, 'max': 0.017010334879159927, 'min': -0.017010342329740524, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).8(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 1}, {'shape': [256], 'mean': 0.0004253720981068909, 'std': 0.009670977480709553, 'max': 0.016636833548545837, 'min': -0.016954980790615082, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).8(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 1}, {'shape': [2, 256, 13, 13], 'mean': 0.0047131311148405075, 'std': 0.08358980715274811, 'max': 0.33009663224220276, 'min': -0.3189106583595276, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).8(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 256, 13, 13], 'mean': 0.0047131311148405075, 'std': 0.08358980715274811, 'max': 0.33009663224220276, 'min': -0.3189106583595276, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).9(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 256, 13, 13], 'mean': 0.03535669669508934, 'std': 0.0499359592795372, 'max': 0.33009663224220276, 'min': 0.0, 'cnt_zero': 41035, 'zero_pct': 0.4742395525147929, 'module': 'model(AlexNet).features(Sequential).9(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 256, 13, 13], 'mean': 0.03535669669508934, 'std': 0.0499359592795372, 'max': 0.33009663224220276, 'min': 0.0, 'cnt_zero': 41035, 'zero_pct': 0.4742395525147929, 'module': 'model(AlexNet).features(Sequential).10(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [256, 256, 3, 3], 'mean': 2.6003770472016186e-05, 'std': 0.012027072720229626, 'max': 0.020833326503634453, 'min': -0.020833313465118408, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).10(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 1}, {'shape': [256], 'mean': 0.00011942532728426158, 'std': 0.012175926938652992, 'max': 0.020765984430909157, 'min': -0.02049778774380684, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).10(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 1}, {'shape': [2, 256, 13, 13], 'mean': 0.0005038615199737251, 'std': 0.03571150824427605, 'max': 0.12614856660366058, 'min': -0.13716860115528107, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).10(Conv2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 256, 13, 13], 'mean': 0.0005038615199737251, 'std': 0.03571150824427605, 'max': 0.12614856660366058, 'min': -0.13716860115528107, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).features(Sequential).11(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 256, 13, 13], 'mean': 0.014308960177004337, 'std': 0.02128779888153076, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 43223, 'zero_pct': 0.4995261649408284, 'module': 'model(AlexNet).features(Sequential).11(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 256, 13, 13], 'mean': 0.014308960177004337, 'std': 0.02128779888153076, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 43223, 'zero_pct': 0.4995261649408284, 'module': 'model(AlexNet).features(Sequential).12(MaxPool2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 256, 6, 6], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).features(Sequential).12(MaxPool2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 256, 6, 6], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).features(Sequential)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 256, 6, 6], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).avgpool(AdaptiveAvgPool2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 256, 6, 6], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).avgpool(AdaptiveAvgPool2d)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 9216], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).classifier(Sequential)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 9216], 'mean': 0.02180689387023449, 'std': 0.025604762136936188, 'max': 0.12614856660366058, 'min': 0.0, 'cnt_zero': 6580, 'zero_pct': 0.3569878472222222, 'module': 'model(AlexNet).classifier(Sequential).0(Dropout)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 9216], 'mean': 0.02170110121369362, 'std': 0.04205140098929405, 'max': 0.2518007457256317, 'min': 0.0, 'cnt_zero': 12475, 'zero_pct': 0.6768120659722222, 'module': 'model(AlexNet).classifier(Sequential).0(Dropout)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 9216], 'mean': 0.02170110121369362, 'std': 0.04205140098929405, 'max': 0.2518007457256317, 'min': 0.0, 'cnt_zero': 12475, 'zero_pct': 0.6768120659722222, 'module': 'model(AlexNet).classifier(Sequential).1(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [4096, 9216], 'mean': 8.854000839164655e-07, 'std': 0.006014422979205847, 'max': 0.010416665114462376, 'min': -0.010416666977107525, 'cnt_zero': 1, 'zero_pct': 2.6490953233506943e-08, 'module': 'model(AlexNet).classifier(Sequential).1(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 1}, {'shape': [4096], 'mean': -4.447995888767764e-05, 'std': 0.0060094729997217655, 'max': 0.010400851257145405, 'min': -0.010413545183837414, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).1(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 1}, {'shape': [2, 4096], 'mean': -0.00019571068696677685, 'std': 0.02773861587047577, 'max': 0.11280506104230881, 'min': -0.11589439958333969, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).1(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 4096], 'mean': -0.00019571068696677685, 'std': 0.02773861587047577, 'max': 0.11280506104230881, 'min': -0.11589439958333969, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).2(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 4096], 'mean': 0.010946482419967651, 'std': 0.016068648546934128, 'max': 0.11280506104230881, 'min': 0.0, 'cnt_zero': 4088, 'zero_pct': 0.4990234375, 'module': 'model(AlexNet).classifier(Sequential).2(ReLU)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 4096], 'mean': 0.010946482419967651, 'std': 0.016068648546934128, 'max': 0.11280506104230881, 'min': 0.0, 'cnt_zero': 4088, 'zero_pct': 0.4990234375, 'module': 'model(AlexNet).classifier(Sequential).3(Dropout)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 4096], 'mean': 0.010910511948168278, 'std': 0.025273488834500313, 'max': 0.22561012208461761, 'min': 0.0, 'cnt_zero': 6143, 'zero_pct': 0.7498779296875, 'module': 'model(AlexNet).classifier(Sequential).3(Dropout)', 'ts': '2020-03-07 10:37:52', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 4096], 'mean': 0.010910511948168278, 'std': 0.025273488834500313, 'max': 0.22561012208461761, 'min': 0.0, 'cnt_zero': 6143, 'zero_pct': 0.7498779296875, 'module': 'model(AlexNet).classifier(Sequential).4(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [4096, 4096], 'mean': 2.2561544028576463e-06, 'std': 0.00902175810188055, 'max': 0.01562499813735485, 'min': -0.01562499813735485, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).4(Linear)', 'ts': '2020-03-07 10:37:52', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 1}, {'shape': [4096], 'mean': -0.00025126454420387745, 'std': 0.009119285270571709, 'max': 0.01561034843325615, 'min': -0.015622705221176147, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).4(Linear)', 'ts': '2020-03-07 10:37:53', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 1}, {'shape': [2, 4096], 'mean': -0.0001800916506908834, 'std': 0.018164895474910736, 'max': 0.0790843740105629, 'min': -0.06692799180746078, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).4(Linear)', 'ts': '2020-03-07 10:37:53', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 4096], 'mean': -0.0001800916506908834, 'std': 0.018164895474910736, 'max': 0.0790843740105629, 'min': -0.06692799180746078, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).5(ReLU)', 'ts': '2020-03-07 10:37:53', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [2, 4096], 'mean': 0.007168028503656387, 'std': 0.010531177744269371, 'max': 0.0790843740105629, 'min': 0.0, 'cnt_zero': 4132, 'zero_pct': 0.50439453125, 'module': 'model(AlexNet).classifier(Sequential).5(ReLU)', 'ts': '2020-03-07 10:37:53', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 4096], 'mean': 0.007168028503656387, 'std': 0.010531177744269371, 'max': 0.0790843740105629, 'min': 0.0, 'cnt_zero': 4132, 'zero_pct': 0.50439453125, 'module': 'model(AlexNet).classifier(Sequential).6(Linear)', 'ts': '2020-03-07 10:37:53', 'ttype': 'input', 'tname': 'input', 'n_batch': 1}, {'shape': [1000, 4096], 'mean': 7.572847152914619e-06, 'std': 0.009020469151437283, 'max': 0.015624983236193657, 'min': -0.015624994412064552, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).6(Linear)', 'ts': '2020-03-07 10:37:53', 'ttype': 'weight', 'tname': 'weight_0', 'n_batch': 1}, {'shape': [1000], 'mean': 0.0005548058543354273, 'std': 0.008900988847017288, 'max': 0.015612822026014328, 'min': -0.015597641468048096, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).6(Linear)', 'ts': '2020-03-07 10:37:53', 'ttype': 'weight', 'tname': 'weight_1', 'n_batch': 1}, {'shape': [2, 1000], 'mean': 0.0006374760414473712, 'std': 0.011509544216096401, 'max': 0.03328176215291023, 'min': -0.033743541687726974, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential).6(Linear)', 'ts': '2020-03-07 10:37:53', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 1000], 'mean': 0.0006374760414473712, 'std': 0.011509544216096401, 'max': 0.03328176215291023, 'min': -0.033743541687726974, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet).classifier(Sequential)', 'ts': '2020-03-07 10:37:53', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}, {'shape': [2, 1000], 'mean': 0.0006374760414473712, 'std': 0.011509544216096401, 'max': 0.03328176215291023, 'min': -0.033743541687726974, 'cnt_zero': 0, 'zero_pct': 0.0, 'module': 'model(AlexNet)', 'ts': '2020-03-07 10:37:53', 'ttype': 'output', 'tname': 'output_0', 'n_batch': 1}]
io cleaner¶
import torch
clean_kv
[source]
clean_kv
(k
,v
)
io_cleaner
[source]
io_cleaner
(**kwargs
)
Cleaning up the tensor input/output to a uniformed format of k,v
- k is the tensor name
- v is a tensor The inherent idea is to break down list,tuple,set, dictionary ,at any level return dictionary
Test for a very bizarre case of input/output
a = torch.rand(2,2)
b = torch.rand(2,2)
c = torch.rand(2,2)
d = torch.rand(2,2)
e = torch.rand(2,2)
result = io_cleaner(a = a,
b= (b,c),
d = {"f":d},
e = {"e1":[a,b,{"e2":e}]})
result.keys(), list(is_tensor(v) for v in result.values())
(dict_keys(['a', 'b.tsr0', 'b.tsr1', 'd.f', 'e.e1.tsr0', 'e.e1.tsr1', 'e.e1.tsr2.e2']), [True, True, True, True, True, True, True])