Build utilities for flask

check_existance[source]

check_existance()

Check if the data file exists, if not, use torch ember in your pytorch modeling first according to the short tutorial

check_existance()
True

get_ember_list[source]

get_ember_list()

get_ember_list()[:5]
['base_AlexNet_20200215_132629.json',
 'base_AlexNet_20200226_002834.json',
 'base_AlexNet_20200211_230327.json',
 'base_AlexNet_20200211_192928.json',
 'base_AlexNet_20200209_183014.json']

unpack_meta[source]

unpack_meta(fname)

get_ember_df[source]

get_ember_df(ember_list)

list out the latest 5 tracking record metadata

get_ember_record[source]

get_ember_record()

df = get_ember_df(get_ember_list())
df.head(5)
start user name
0 2020-03-07 10:37:37 salvor AlexNet_20200307_103737
1 2020-03-07 10:35:52 salvor AlexNet_20200307_103552
2 2020-03-05 23:12:37 salvor AlexNet_20200305_231237
3 2020-03-05 23:10:04 salvor AlexNet_20200305_231004
4 2020-03-03 23:50:54 salvor AlexNet_20200303_235054
get_ember_record()
[{'start': '2020-03-07 10:37:37',
  'user': 'salvor',
  'name': 'AlexNet_20200307_103737',
  'latest': 0},
 {'start': '2020-03-07 10:35:52',
  'user': 'salvor',
  'name': 'AlexNet_20200307_103552',
  'latest': 1},
 {'start': '2020-03-05 23:12:37',
  'user': 'salvor',
  'name': 'AlexNet_20200305_231237',
  'latest': 2},
 {'start': '2020-03-05 23:10:04',
  'user': 'salvor',
  'name': 'AlexNet_20200305_231004',
  'latest': 3},
 {'start': '2020-03-03 23:50:54',
  'user': 'salvor',
  'name': 'AlexNet_20200303_235054',
  'latest': 4},
 {'start': '2020-03-03 23:44:40',
  'user': 'salvor',
  'name': 'AlexNet_20200303_234440',
  'latest': 5},
 {'start': '2020-03-03 23:41:30',
  'user': 'salvor',
  'name': 'AlexNet_20200303_234130',
  'latest': 6},
 {'start': '2020-03-03 23:39:23',
  'user': 'salvor',
  'name': 'AlexNet_20200303_233923',
  'latest': 7},
 {'start': '2020-02-26 00:28:34',
  'user': 'salvor',
  'name': 'AlexNet_20200226_002834',
  'latest': 8},
 {'start': '2020-02-26 00:25:28',
  'user': 'salvor',
  'name': 'AlexNet_20200226_002528',
  'latest': 9},
 {'start': '2020-02-25 08:21:27',
  'user': 'salvor',
  'name': 'AlexNet_20200225_082127',
  'latest': 10},
 {'start': '2020-02-24 23:32:07',
  'user': 'salvor',
  'name': 'AlexNet_20200224_233207',
  'latest': 11},
 {'start': '2020-02-24 23:28:27',
  'user': 'salvor',
  'name': 'AlexNet_20200224_232827',
  'latest': 12},
 {'start': '2020-02-24 22:46:54',
  'user': 'salvor',
  'name': 'AlexNet_20200224_224654',
  'latest': 13},
 {'start': '2020-02-24 21:40:30',
  'user': 'salvor',
  'name': 'AlexNet_20200224_214030',
  'latest': 14},
 {'start': '2020-02-20 00:32:06',
  'user': 'salvor',
  'name': 'tinyVGG_20200220_003206',
  'latest': 15},
 {'start': '2020-02-20 00:30:33',
  'user': 'salvor',
  'name': 'tinyVGG_20200220_003033',
  'latest': 16},
 {'start': '2020-02-20 00:28:02',
  'user': 'salvor',
  'name': 'tinyVGG_20200220_002802',
  'latest': 17},
 {'start': '2020-02-20 00:16:09',
  'user': 'salvor',
  'name': 'AlexNet_20200220_001609',
  'latest': 18},
 {'start': '2020-02-19 23:59:22',
  'user': 'salvor',
  'name': 'AlexNet_20200219_235922',
  'latest': 19},
 {'start': '2020-02-19 23:57:57',
  'user': 'salvor',
  'name': 'AlexNet_20200219_235757',
  'latest': 20},
 {'start': '2020-02-19 23:56:26',
  'user': 'salvor',
  'name': 'AlexNet_20200219_235626',
  'latest': 21},
 {'start': '2020-02-17 22:40:15',
  'user': 'salvor',
  'name': 'AlexNet_20200217_224015',
  'latest': 22},
 {'start': '2020-02-16 18:14:43',
  'user': 'salvor',
  'name': 'AlexNet_20200216_181443',
  'latest': 23},
 {'start': '2020-02-16 18:13:06',
  'user': 'salvor',
  'name': 'AlexNet_20200216_181306',
  'latest': 24},
 {'start': '2020-02-16 17:45:33',
  'user': 'salvor',
  'name': 'AlexNet_20200216_174533',
  'latest': 25},
 {'start': '2020-02-16 12:35:27',
  'user': 'salvor',
  'name': 'tinyVGG_20200216_123527',
  'latest': 26},
 {'start': '2020-02-16 12:07:42',
  'user': 'salvor',
  'name': 'tinyVGG_20200216_120742',
  'latest': 27},
 {'start': '2020-02-15 13:44:48',
  'user': 'salvor',
  'name': 'AlexNet_20200215_134448',
  'latest': 28},
 {'start': '2020-02-15 13:26:29',
  'user': 'salvor',
  'name': 'AlexNet_20200215_132629',
  'latest': 29},
 {'start': '2020-02-15 13:25:46',
  'user': 'salvor',
  'name': 'AlexNet_20200215_132546',
  'latest': 30},
 {'start': '2020-02-11 23:07:43',
  'user': 'salvor',
  'name': 'AlexNet_20200211_230743',
  'latest': 31},
 {'start': '2020-02-11 23:07:40',
  'user': 'salvor',
  'name': 'AlexNet_20200211_230740',
  'latest': 32},
 {'start': '2020-02-11 23:06:14',
  'user': 'salvor',
  'name': 'AlexNet_20200211_230614',
  'latest': 33},
 {'start': '2020-02-11 23:06:09',
  'user': 'salvor',
  'name': 'AlexNet_20200211_230609',
  'latest': 34},
 {'start': '2020-02-11 23:04:37',
  'user': 'salvor',
  'name': 'AlexNet_20200211_230437',
  'latest': 35},
 {'start': '2020-02-11 23:04:12',
  'user': 'salvor',
  'name': 'AlexNet_20200211_230412',
  'latest': 36},
 {'start': '2020-02-11 23:03:35',
  'user': 'salvor',
  'name': 'AlexNet_20200211_230335',
  'latest': 37},
 {'start': '2020-02-11 23:03:27',
  'user': 'salvor',
  'name': 'AlexNet_20200211_230327',
  'latest': 38},
 {'start': '2020-02-11 23:03:09',
  'user': 'salvor',
  'name': 'AlexNet_20200211_230309',
  'latest': 39},
 {'start': '2020-02-11 22:59:58',
  'user': 'salvor',
  'name': 'AlexNet_20200211_225958',
  'latest': 40},
 {'start': '2020-02-11 22:59:27',
  'user': 'salvor',
  'name': 'AlexNet_20200211_225927',
  'latest': 41},
 {'start': '2020-02-11 22:52:12',
  'user': 'salvor',
  'name': 'AlexNet_20200211_225212',
  'latest': 42},
 {'start': '2020-02-11 22:49:03',
  'user': 'salvor',
  'name': 'AlexNet_20200211_224903',
  'latest': 43},
 {'start': '2020-02-11 22:48:14',
  'user': 'salvor',
  'name': 'AlexNet_20200211_224814',
  'latest': 44},
 {'start': '2020-02-11 22:46:55',
  'user': 'salvor',
  'name': 'AlexNet_20200211_224655',
  'latest': 45},
 {'start': '2020-02-11 22:37:41',
  'user': 'salvor',
  'name': 'AlexNet_20200211_223741',
  'latest': 46},
 {'start': '2020-02-11 22:33:28',
  'user': 'salvor',
  'name': 'AlexNet_20200211_223328',
  'latest': 47},
 {'start': '2020-02-11 22:30:11',
  'user': 'salvor',
  'name': 'AlexNet_20200211_223011',
  'latest': 48},
 {'start': '2020-02-11 20:57:08',
  'user': 'salvor',
  'name': 'AlexNet_20200211_205708',
  'latest': 49},
 {'start': '2020-02-11 19:39:34',
  'user': 'salvor',
  'name': 'AlexNet_20200211_193934',
  'latest': 50},
 {'start': '2020-02-11 19:36:48',
  'user': 'salvor',
  'name': 'AlexNet_20200211_193648',
  'latest': 51},
 {'start': '2020-02-11 19:34:37',
  'user': 'salvor',
  'name': 'AlexNet_20200211_193437',
  'latest': 52},
 {'start': '2020-02-11 19:34:11',
  'user': 'salvor',
  'name': 'AlexNet_20200211_193411',
  'latest': 53},
 {'start': '2020-02-11 19:32:27',
  'user': 'salvor',
  'name': 'AlexNet_20200211_193227',
  'latest': 54},
 {'start': '2020-02-11 19:32:05',
  'user': 'salvor',
  'name': 'AlexNet_20200211_193205',
  'latest': 55},
 {'start': '2020-02-11 19:29:28',
  'user': 'salvor',
  'name': 'AlexNet_20200211_192928',
  'latest': 56},
 {'start': '2020-02-09 21:03:01',
  'user': 'salvor',
  'name': 'AlexNet_20200209_210301',
  'latest': 57},
 {'start': '2020-02-09 21:01:24',
  'user': 'salvor',
  'name': 'AlexNet_20200209_210124',
  'latest': 58},
 {'start': '2020-02-09 20:47:01',
  'user': 'salvor',
  'name': 'AlexNet_20200209_204701',
  'latest': 59},
 {'start': '2020-02-09 20:41:29',
  'user': 'salvor',
  'name': 'AlexNet_20200209_204129',
  'latest': 60},
 {'start': '2020-02-09 20:39:50',
  'user': 'salvor',
  'name': 'AlexNet_20200209_203950',
  'latest': 61},
 {'start': '2020-02-09 20:38:36',
  'user': 'salvor',
  'name': 'AlexNet_20200209_203836',
  'latest': 62},
 {'start': '2020-02-09 20:37:21',
  'user': 'salvor',
  'name': 'AlexNet_20200209_203721',
  'latest': 63},
 {'start': '2020-02-09 20:36:36',
  'user': 'salvor',
  'name': 'AlexNet_20200209_203636',
  'latest': 64},
 {'start': '2020-02-09 20:23:15',
  'user': 'salvor',
  'name': 'AlexNet_20200209_202315',
  'latest': 65},
 {'start': '2020-02-09 20:21:21',
  'user': 'salvor',
  'name': 'AlexNet_20200209_202121',
  'latest': 66},
 {'start': '2020-02-09 20:15:23',
  'user': 'salvor',
  'name': 'AlexNet_20200209_201523',
  'latest': 67},
 {'start': '2020-02-09 20:03:02',
  'user': 'salvor',
  'name': 'AlexNet_20200209_200302',
  'latest': 68},
 {'start': '2020-02-09 20:00:03',
  'user': 'salvor',
  'name': 'AlexNet_20200209_200003',
  'latest': 69},
 {'start': '2020-02-09 18:47:46',
  'user': 'salvor',
  'name': 'AlexNet_20200209_184746',
  'latest': 70},
 {'start': '2020-02-09 18:47:17',
  'user': 'salvor',
  'name': 'AlexNet_20200209_184717',
  'latest': 71},
 {'start': '2020-02-09 18:46:51',
  'user': 'salvor',
  'name': 'AlexNet_20200209_184651',
  'latest': 72},
 {'start': '2020-02-09 18:31:54',
  'user': 'salvor',
  'name': 'AlexNet_20200209_183154',
  'latest': 73},
 {'start': '2020-02-09 18:30:44',
  'user': 'salvor',
  'name': 'AlexNet_20200209_183044',
  'latest': 74},
 {'start': '2020-02-09 18:30:14',
  'user': 'salvor',
  'name': 'AlexNet_20200209_183014',
  'latest': 75},
 {'start': '2020-02-09 18:29:37',
  'user': 'salvor',
  'name': 'AlexNet_20200209_182937',
  'latest': 76},
 {'start': '2020-02-09 18:29:12',
  'user': 'salvor',
  'name': 'AlexNet_20200209_182912',
  'latest': 77},
 {'start': '2020-02-09 18:29:02',
  'user': 'salvor',
  'name': 'AlexNet_20200209_182902',
  'latest': 78},
 {'start': '2020-02-09 18:28:21',
  'user': 'salvor',
  'name': 'AlexNet_20200209_182821',
  'latest': 79}]

Ember Reader

A reading handler to process Torch Ember data

class emberReader[source]

emberReader(name, verbose=False)

er = emberReader("AlexNet_20200307_103737",verbose = True)
['init-00_phase-valid_epoch-0.log', 'init-00_phase-train_epoch-0.log', 'init-00_phase-train_epoch-1.log', 'init-00_phase-valid_epoch-1.log']
er.structure
{'name': 'model(AlexNet)',
 'short': 'model(AlexNet)',
 'children': [{'name': 'model(AlexNet).features(Sequential)',
   'short': 'features(Sequential)',
   'children': [{'name': 'model(AlexNet).features(Sequential).0(Conv2d)',
     'short': '0(Conv2d)'},
    {'name': 'model(AlexNet).features(Sequential).1(ReLU)',
     'short': '1(ReLU)'},
    {'name': 'model(AlexNet).features(Sequential).2(MaxPool2d)',
     'short': '2(MaxPool2d)'},
    {'name': 'model(AlexNet).features(Sequential).3(Conv2d)',
     'short': '3(Conv2d)'},
    {'name': 'model(AlexNet).features(Sequential).4(ReLU)',
     'short': '4(ReLU)'},
    {'name': 'model(AlexNet).features(Sequential).5(MaxPool2d)',
     'short': '5(MaxPool2d)'},
    {'name': 'model(AlexNet).features(Sequential).6(Conv2d)',
     'short': '6(Conv2d)'},
    {'name': 'model(AlexNet).features(Sequential).7(ReLU)',
     'short': '7(ReLU)'},
    {'name': 'model(AlexNet).features(Sequential).8(Conv2d)',
     'short': '8(Conv2d)'},
    {'name': 'model(AlexNet).features(Sequential).9(ReLU)',
     'short': '9(ReLU)'},
    {'name': 'model(AlexNet).features(Sequential).10(Conv2d)',
     'short': '10(Conv2d)'},
    {'name': 'model(AlexNet).features(Sequential).11(ReLU)',
     'short': '11(ReLU)'},
    {'name': 'model(AlexNet).features(Sequential).12(MaxPool2d)',
     'short': '12(MaxPool2d)'}]},
  {'name': 'model(AlexNet).avgpool(AdaptiveAvgPool2d)',
   'short': 'avgpool(AdaptiveAvgPool2d)'},
  {'name': 'model(AlexNet).classifier(Sequential)',
   'short': 'classifier(Sequential)',
   'children': [{'name': 'model(AlexNet).classifier(Sequential).0(Dropout)',
     'short': '0(Dropout)'},
    {'name': 'model(AlexNet).classifier(Sequential).1(Linear)',
     'short': '1(Linear)'},
    {'name': 'model(AlexNet).classifier(Sequential).2(ReLU)',
     'short': '2(ReLU)'},
    {'name': 'model(AlexNet).classifier(Sequential).3(Dropout)',
     'short': '3(Dropout)'},
    {'name': 'model(AlexNet).classifier(Sequential).4(Linear)',
     'short': '4(Linear)'},
    {'name': 'model(AlexNet).classifier(Sequential).5(ReLU)',
     'short': '5(ReLU)'},
    {'name': 'model(AlexNet).classifier(Sequential).6(Linear)',
     'short': '6(Linear)'}]}]}

Basical information

er.base
{'start': '2020-03-07 10:37:37', 'user': 'salvor'}

List the log files under log directory on this module task

er.t.log_files
['init-00_phase-valid_epoch-0.log',
 'init-00_phase-train_epoch-0.log',
 'init-00_phase-train_epoch-1.log',
 'init-00_phase-valid_epoch-1.log']

Latest record as dataframe

er.t.latest_df
shape mean std max min cnt_zero zero_pct module ts ttype tname n_batch
0 [2, 3, 224, 224] -1.001885 0.577536 -0.000016 -1.999997 0 0.0 model(AlexNet) 2020-03-07 10:37:52 input x 1
1 [2, 3, 224, 224] -1.001885 0.577536 -0.000016 -1.999997 0 0.0 model(AlexNet).features(Sequential) 2020-03-07 10:37:52 input input 1
2 [2, 3, 224, 224] -1.001885 0.577536 -0.000016 -1.999997 0 0.0 model(AlexNet).features(Sequential).0(Conv2d) 2020-03-07 10:37:52 input input 1
3 [64, 3, 11, 11] -0.000152 0.030288 0.052461 -0.052483 0 0.0 model(AlexNet).features(Sequential).0(Conv2d) 2020-03-07 10:37:52 weight weight_0 1
4 [64] 0.003515 0.027836 0.051731 -0.044360 0 0.0 model(AlexNet).features(Sequential).0(Conv2d) 2020-03-07 10:37:52 weight weight_1 1
... ... ... ... ... ... ... ... ... ... ... ... ...
59 [1000, 4096] 0.000008 0.009020 0.015625 -0.015625 0 0.0 model(AlexNet).classifier(Sequential).6(Linear) 2020-03-07 10:37:53 weight weight_0 1
60 [1000] 0.000555 0.008901 0.015613 -0.015598 0 0.0 model(AlexNet).classifier(Sequential).6(Linear) 2020-03-07 10:37:53 weight weight_1 1
61 [2, 1000] 0.000637 0.011510 0.033282 -0.033744 0 0.0 model(AlexNet).classifier(Sequential).6(Linear) 2020-03-07 10:37:53 output output_0 1
62 [2, 1000] 0.000637 0.011510 0.033282 -0.033744 0 0.0 model(AlexNet).classifier(Sequential) 2020-03-07 10:37:53 output output_0 1
63 [2, 1000] 0.000637 0.011510 0.033282 -0.033744 0 0.0 model(AlexNet) 2020-03-07 10:37:53 output output_0 1

64 rows × 12 columns

Load a log file as a long list of dictionary

json.loads(er.read_log('init-00_phase-valid_epoch-1.log'))
[{'shape': [2, 3, 224, 224],
  'mean': -1.001885175704956,
  'std': 0.5775364637374878,
  'max': -1.5735626220703125e-05,
  'min': -1.9999974966049194,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet)',
  'ts': '2020-03-07 10:37:50',
  'ttype': 'input',
  'tname': 'x',
  'n_batch': 0},
 {'shape': [2, 3, 224, 224],
  'mean': -1.001885175704956,
  'std': 0.5775364637374878,
  'max': -1.5735626220703125e-05,
  'min': -1.9999974966049194,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential)',
  'ts': '2020-03-07 10:37:50',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [2, 3, 224, 224],
  'mean': -1.001885175704956,
  'std': 0.5775364637374878,
  'max': -1.5735626220703125e-05,
  'min': -1.9999974966049194,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).0(Conv2d)',
  'ts': '2020-03-07 10:37:50',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [64, 3, 11, 11],
  'mean': -0.000151715605170466,
  'std': 0.03028801828622818,
  'max': 0.05246129631996155,
  'min': -0.05248286575078964,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).0(Conv2d)',
  'ts': '2020-03-07 10:37:50',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 0},
 {'shape': [64],
  'mean': 0.003515456337481737,
  'std': 0.027836013585329056,
  'max': 0.0517314150929451,
  'min': -0.04436026141047478,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).0(Conv2d)',
  'ts': '2020-03-07 10:37:50',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 0},
 {'shape': [2, 64, 55, 55],
  'mean': 0.058029815554618835,
  'std': 0.6799391508102417,
  'max': 2.8890106678009033,
  'min': -2.7371437549591064,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).0(Conv2d)',
  'ts': '2020-03-07 10:37:50',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 64, 55, 55],
  'mean': 0.058029815554618835,
  'std': 0.6799391508102417,
  'max': 2.8890106678009033,
  'min': -2.7371437549591064,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).1(ReLU)',
  'ts': '2020-03-07 10:37:50',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [2, 64, 55, 55],
  'mean': 0.2949860095977783,
  'std': 0.4212140142917633,
  'max': 2.8890106678009033,
  'min': 0.0,
  'cnt_zero': 179115,
  'zero_pct': 0.4625903925619835,
  'module': 'model(AlexNet).features(Sequential).1(ReLU)',
  'ts': '2020-03-07 10:37:50',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 64, 55, 55],
  'mean': 0.2949860095977783,
  'std': 0.4212140142917633,
  'max': 2.8890106678009033,
  'min': 0.0,
  'cnt_zero': 179115,
  'zero_pct': 0.4625903925619835,
  'module': 'model(AlexNet).features(Sequential).2(MaxPool2d)',
  'ts': '2020-03-07 10:37:50',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [2, 64, 27, 27],
  'mean': 0.6178204417228699,
  'std': 0.5235710144042969,
  'max': 2.8890106678009033,
  'min': 0.0,
  'cnt_zero': 16626,
  'zero_pct': 0.17817644032921812,
  'module': 'model(AlexNet).features(Sequential).2(MaxPool2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 64, 27, 27],
  'mean': 0.6178204417228699,
  'std': 0.5235710144042969,
  'max': 2.8890106678009033,
  'min': 0.0,
  'cnt_zero': 16626,
  'zero_pct': 0.17817644032921812,
  'module': 'model(AlexNet).features(Sequential).3(Conv2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [192, 64, 5, 5],
  'mean': 2.920041879406199e-05,
  'std': 0.014425805769860744,
  'max': 0.024999992921948433,
  'min': -0.024999914690852165,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).3(Conv2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 0},
 {'shape': [192],
  'mean': 5.584982500295155e-05,
  'std': 0.01449640840291977,
  'max': 0.02486034296452999,
  'min': -0.024976877495646477,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).3(Conv2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 0},
 {'shape': [2, 192, 27, 27],
  'mean': 0.005711908917874098,
  'std': 0.4219861924648285,
  'max': 1.3408710956573486,
  'min': -1.5709540843963623,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).3(Conv2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 192, 27, 27],
  'mean': 0.005711908917874098,
  'std': 0.4219861924648285,
  'max': 1.3408710956573486,
  'min': -1.5709540843963623,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).4(ReLU)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [2, 192, 27, 27],
  'mean': 0.1750352382659912,
  'std': 0.24230045080184937,
  'max': 1.3408710956573486,
  'min': 0.0,
  'cnt_zero': 136728,
  'zero_pct': 0.48842592592592593,
  'module': 'model(AlexNet).features(Sequential).4(ReLU)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 192, 27, 27],
  'mean': 0.1750352382659912,
  'std': 0.24230045080184937,
  'max': 1.3408710956573486,
  'min': 0.0,
  'cnt_zero': 136728,
  'zero_pct': 0.48842592592592593,
  'module': 'model(AlexNet).features(Sequential).5(MaxPool2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [2, 192, 13, 13],
  'mean': 0.2699883282184601,
  'std': 0.29403892159461975,
  'max': 1.3408710956573486,
  'min': 0.0,
  'cnt_zero': 22632,
  'zero_pct': 0.34874260355029585,
  'module': 'model(AlexNet).features(Sequential).5(MaxPool2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 192, 13, 13],
  'mean': 0.2699883282184601,
  'std': 0.29403892159461975,
  'max': 1.3408710956573486,
  'min': 0.0,
  'cnt_zero': 22632,
  'zero_pct': 0.34874260355029585,
  'module': 'model(AlexNet).features(Sequential).6(Conv2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [384, 192, 3, 3],
  'mean': -1.0054035556095187e-05,
  'std': 0.013890313915908337,
  'max': 0.02405625395476818,
  'min': -0.024056246504187584,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).6(Conv2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 0},
 {'shape': [384],
  'mean': -0.00042058341205120087,
  'std': 0.013936573639512062,
  'max': 0.02394459955394268,
  'min': -0.023925118148326874,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).6(Conv2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 0},
 {'shape': [2, 384, 13, 13],
  'mean': -0.008931996300816536,
  'std': 0.2149755209684372,
  'max': 0.7376869916915894,
  'min': -0.7926941514015198,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).6(Conv2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 384, 13, 13],
  'mean': -0.008931996300816536,
  'std': 0.2149755209684372,
  'max': 0.7376869916915894,
  'min': -0.7926941514015198,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).7(ReLU)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [2, 384, 13, 13],
  'mean': 0.08150506764650345,
  'std': 0.122230164706707,
  'max': 0.7376869916915894,
  'min': 0.0,
  'cnt_zero': 67078,
  'zero_pct': 0.5168115138067061,
  'module': 'model(AlexNet).features(Sequential).7(ReLU)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 384, 13, 13],
  'mean': 0.08150506764650345,
  'std': 0.122230164706707,
  'max': 0.7376869916915894,
  'min': 0.0,
  'cnt_zero': 67078,
  'zero_pct': 0.5168115138067061,
  'module': 'model(AlexNet).features(Sequential).8(Conv2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [256, 384, 3, 3],
  'mean': 1.5411440472234972e-05,
  'std': 0.009823623113334179,
  'max': 0.017010334879159927,
  'min': -0.017010342329740524,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).8(Conv2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 0},
 {'shape': [256],
  'mean': 0.0004253720981068909,
  'std': 0.009670977480709553,
  'max': 0.016636833548545837,
  'min': -0.016954980790615082,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).8(Conv2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 0},
 {'shape': [2, 256, 13, 13],
  'mean': 0.0047131311148405075,
  'std': 0.08358980715274811,
  'max': 0.33009663224220276,
  'min': -0.3189106583595276,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).8(Conv2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 256, 13, 13],
  'mean': 0.0047131311148405075,
  'std': 0.08358980715274811,
  'max': 0.33009663224220276,
  'min': -0.3189106583595276,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).9(ReLU)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [2, 256, 13, 13],
  'mean': 0.03535669669508934,
  'std': 0.0499359592795372,
  'max': 0.33009663224220276,
  'min': 0.0,
  'cnt_zero': 41035,
  'zero_pct': 0.4742395525147929,
  'module': 'model(AlexNet).features(Sequential).9(ReLU)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 256, 13, 13],
  'mean': 0.03535669669508934,
  'std': 0.0499359592795372,
  'max': 0.33009663224220276,
  'min': 0.0,
  'cnt_zero': 41035,
  'zero_pct': 0.4742395525147929,
  'module': 'model(AlexNet).features(Sequential).10(Conv2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [256, 256, 3, 3],
  'mean': 2.6003770472016186e-05,
  'std': 0.012027072720229626,
  'max': 0.020833326503634453,
  'min': -0.020833313465118408,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).10(Conv2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 0},
 {'shape': [256],
  'mean': 0.00011942532728426158,
  'std': 0.012175926938652992,
  'max': 0.020765984430909157,
  'min': -0.02049778774380684,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).10(Conv2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 0},
 {'shape': [2, 256, 13, 13],
  'mean': 0.0005038615199737251,
  'std': 0.03571150824427605,
  'max': 0.12614856660366058,
  'min': -0.13716860115528107,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).10(Conv2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 256, 13, 13],
  'mean': 0.0005038615199737251,
  'std': 0.03571150824427605,
  'max': 0.12614856660366058,
  'min': -0.13716860115528107,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).11(ReLU)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [2, 256, 13, 13],
  'mean': 0.014308960177004337,
  'std': 0.02128779888153076,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 43223,
  'zero_pct': 0.4995261649408284,
  'module': 'model(AlexNet).features(Sequential).11(ReLU)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 256, 13, 13],
  'mean': 0.014308960177004337,
  'std': 0.02128779888153076,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 43223,
  'zero_pct': 0.4995261649408284,
  'module': 'model(AlexNet).features(Sequential).12(MaxPool2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [2, 256, 6, 6],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).features(Sequential).12(MaxPool2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 256, 6, 6],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).features(Sequential)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 256, 6, 6],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).avgpool(AdaptiveAvgPool2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [2, 256, 6, 6],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).avgpool(AdaptiveAvgPool2d)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 9216],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).classifier(Sequential)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [2, 9216],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).classifier(Sequential).0(Dropout)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [2, 9216],
  'mean': 0.021722903475165367,
  'std': 0.04194366931915283,
  'max': 0.2518007457256317,
  'min': 0.0,
  'cnt_zero': 12470,
  'zero_pct': 0.6765407986111112,
  'module': 'model(AlexNet).classifier(Sequential).0(Dropout)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 9216],
  'mean': 0.021722903475165367,
  'std': 0.04194366931915283,
  'max': 0.2518007457256317,
  'min': 0.0,
  'cnt_zero': 12470,
  'zero_pct': 0.6765407986111112,
  'module': 'model(AlexNet).classifier(Sequential).1(Linear)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [4096, 9216],
  'mean': 8.854000839164655e-07,
  'std': 0.006014422979205847,
  'max': 0.010416665114462376,
  'min': -0.010416666977107525,
  'cnt_zero': 1,
  'zero_pct': 2.6490953233506943e-08,
  'module': 'model(AlexNet).classifier(Sequential).1(Linear)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 0},
 {'shape': [4096],
  'mean': -4.447995888767764e-05,
  'std': 0.0060094729997217655,
  'max': 0.010400851257145405,
  'min': -0.010413545183837414,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).1(Linear)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 0},
 {'shape': [2, 4096],
  'mean': 0.00023734159185551107,
  'std': 0.02741725742816925,
  'max': 0.09106789529323578,
  'min': -0.10247291624546051,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).1(Linear)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 4096],
  'mean': 0.00023734159185551107,
  'std': 0.02741725742816925,
  'max': 0.09106789529323578,
  'min': -0.10247291624546051,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).2(ReLU)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [2, 4096],
  'mean': 0.011032940819859505,
  'std': 0.016011307016015053,
  'max': 0.09106789529323578,
  'min': 0.0,
  'cnt_zero': 4063,
  'zero_pct': 0.4959716796875,
  'module': 'model(AlexNet).classifier(Sequential).2(ReLU)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 4096],
  'mean': 0.011032940819859505,
  'std': 0.016011307016015053,
  'max': 0.09106789529323578,
  'min': 0.0,
  'cnt_zero': 4063,
  'zero_pct': 0.4959716796875,
  'module': 'model(AlexNet).classifier(Sequential).3(Dropout)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [2, 4096],
  'mean': 0.01122759748250246,
  'std': 0.025463327765464783,
  'max': 0.18213579058647156,
  'min': 0.0,
  'cnt_zero': 6124,
  'zero_pct': 0.74755859375,
  'module': 'model(AlexNet).classifier(Sequential).3(Dropout)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 4096],
  'mean': 0.01122759748250246,
  'std': 0.025463327765464783,
  'max': 0.18213579058647156,
  'min': 0.0,
  'cnt_zero': 6124,
  'zero_pct': 0.74755859375,
  'module': 'model(AlexNet).classifier(Sequential).4(Linear)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [4096, 4096],
  'mean': 2.2561544028576463e-06,
  'std': 0.00902175810188055,
  'max': 0.01562499813735485,
  'min': -0.01562499813735485,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).4(Linear)',
  'ts': '2020-03-07 10:37:51',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 0},
 {'shape': [4096],
  'mean': -0.00025126454420387745,
  'std': 0.009119285270571709,
  'max': 0.01561034843325615,
  'min': -0.015622705221176147,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).4(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 0},
 {'shape': [2, 4096],
  'mean': -3.335143264848739e-05,
  'std': 0.018526341766119003,
  'max': 0.06954209506511688,
  'min': -0.06549615412950516,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).4(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 4096],
  'mean': -3.335143264848739e-05,
  'std': 0.018526341766119003,
  'max': 0.06954209506511688,
  'min': -0.06549615412950516,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).5(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [2, 4096],
  'mean': 0.007406808901578188,
  'std': 0.010857083834707737,
  'max': 0.06954209506511688,
  'min': 0.0,
  'cnt_zero': 4122,
  'zero_pct': 0.503173828125,
  'module': 'model(AlexNet).classifier(Sequential).5(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 4096],
  'mean': 0.007406808901578188,
  'std': 0.010857083834707737,
  'max': 0.06954209506511688,
  'min': 0.0,
  'cnt_zero': 4122,
  'zero_pct': 0.503173828125,
  'module': 'model(AlexNet).classifier(Sequential).6(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 0},
 {'shape': [1000, 4096],
  'mean': 7.572847152914619e-06,
  'std': 0.009020469151437283,
  'max': 0.015624983236193657,
  'min': -0.015624994412064552,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).6(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 0},
 {'shape': [1000],
  'mean': 0.0005548058543354273,
  'std': 0.008900988847017288,
  'max': 0.015612822026014328,
  'min': -0.015597641468048096,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).6(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 0},
 {'shape': [2, 1000],
  'mean': 0.0009677497437223792,
  'std': 0.011631517671048641,
  'max': 0.03033626265823841,
  'min': -0.03496428206562996,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).6(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 1000],
  'mean': 0.0009677497437223792,
  'std': 0.011631517671048641,
  'max': 0.03033626265823841,
  'min': -0.03496428206562996,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 1000],
  'mean': 0.0009677497437223792,
  'std': 0.011631517671048641,
  'max': 0.03033626265823841,
  'min': -0.03496428206562996,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 0},
 {'shape': [2, 3, 224, 224],
  'mean': -1.001885175704956,
  'std': 0.5775364637374878,
  'max': -1.5735626220703125e-05,
  'min': -1.9999974966049194,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'x',
  'n_batch': 1},
 {'shape': [2, 3, 224, 224],
  'mean': -1.001885175704956,
  'std': 0.5775364637374878,
  'max': -1.5735626220703125e-05,
  'min': -1.9999974966049194,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 3, 224, 224],
  'mean': -1.001885175704956,
  'std': 0.5775364637374878,
  'max': -1.5735626220703125e-05,
  'min': -1.9999974966049194,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).0(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [64, 3, 11, 11],
  'mean': -0.000151715605170466,
  'std': 0.03028801828622818,
  'max': 0.05246129631996155,
  'min': -0.05248286575078964,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).0(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 1},
 {'shape': [64],
  'mean': 0.003515456337481737,
  'std': 0.027836013585329056,
  'max': 0.0517314150929451,
  'min': -0.04436026141047478,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).0(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 1},
 {'shape': [2, 64, 55, 55],
  'mean': 0.058029815554618835,
  'std': 0.6799391508102417,
  'max': 2.8890106678009033,
  'min': -2.7371437549591064,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).0(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 64, 55, 55],
  'mean': 0.058029815554618835,
  'std': 0.6799391508102417,
  'max': 2.8890106678009033,
  'min': -2.7371437549591064,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).1(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 64, 55, 55],
  'mean': 0.2949860095977783,
  'std': 0.4212140142917633,
  'max': 2.8890106678009033,
  'min': 0.0,
  'cnt_zero': 179115,
  'zero_pct': 0.4625903925619835,
  'module': 'model(AlexNet).features(Sequential).1(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 64, 55, 55],
  'mean': 0.2949860095977783,
  'std': 0.4212140142917633,
  'max': 2.8890106678009033,
  'min': 0.0,
  'cnt_zero': 179115,
  'zero_pct': 0.4625903925619835,
  'module': 'model(AlexNet).features(Sequential).2(MaxPool2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 64, 27, 27],
  'mean': 0.6178204417228699,
  'std': 0.5235710144042969,
  'max': 2.8890106678009033,
  'min': 0.0,
  'cnt_zero': 16626,
  'zero_pct': 0.17817644032921812,
  'module': 'model(AlexNet).features(Sequential).2(MaxPool2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 64, 27, 27],
  'mean': 0.6178204417228699,
  'std': 0.5235710144042969,
  'max': 2.8890106678009033,
  'min': 0.0,
  'cnt_zero': 16626,
  'zero_pct': 0.17817644032921812,
  'module': 'model(AlexNet).features(Sequential).3(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [192, 64, 5, 5],
  'mean': 2.920041879406199e-05,
  'std': 0.014425805769860744,
  'max': 0.024999992921948433,
  'min': -0.024999914690852165,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).3(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 1},
 {'shape': [192],
  'mean': 5.584982500295155e-05,
  'std': 0.01449640840291977,
  'max': 0.02486034296452999,
  'min': -0.024976877495646477,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).3(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 1},
 {'shape': [2, 192, 27, 27],
  'mean': 0.005711908917874098,
  'std': 0.4219861924648285,
  'max': 1.3408710956573486,
  'min': -1.5709540843963623,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).3(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 192, 27, 27],
  'mean': 0.005711908917874098,
  'std': 0.4219861924648285,
  'max': 1.3408710956573486,
  'min': -1.5709540843963623,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).4(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 192, 27, 27],
  'mean': 0.1750352382659912,
  'std': 0.24230045080184937,
  'max': 1.3408710956573486,
  'min': 0.0,
  'cnt_zero': 136728,
  'zero_pct': 0.48842592592592593,
  'module': 'model(AlexNet).features(Sequential).4(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 192, 27, 27],
  'mean': 0.1750352382659912,
  'std': 0.24230045080184937,
  'max': 1.3408710956573486,
  'min': 0.0,
  'cnt_zero': 136728,
  'zero_pct': 0.48842592592592593,
  'module': 'model(AlexNet).features(Sequential).5(MaxPool2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 192, 13, 13],
  'mean': 0.2699883282184601,
  'std': 0.29403892159461975,
  'max': 1.3408710956573486,
  'min': 0.0,
  'cnt_zero': 22632,
  'zero_pct': 0.34874260355029585,
  'module': 'model(AlexNet).features(Sequential).5(MaxPool2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 192, 13, 13],
  'mean': 0.2699883282184601,
  'std': 0.29403892159461975,
  'max': 1.3408710956573486,
  'min': 0.0,
  'cnt_zero': 22632,
  'zero_pct': 0.34874260355029585,
  'module': 'model(AlexNet).features(Sequential).6(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [384, 192, 3, 3],
  'mean': -1.0054035556095187e-05,
  'std': 0.013890313915908337,
  'max': 0.02405625395476818,
  'min': -0.024056246504187584,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).6(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 1},
 {'shape': [384],
  'mean': -0.00042058341205120087,
  'std': 0.013936573639512062,
  'max': 0.02394459955394268,
  'min': -0.023925118148326874,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).6(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 1},
 {'shape': [2, 384, 13, 13],
  'mean': -0.008931996300816536,
  'std': 0.2149755209684372,
  'max': 0.7376869916915894,
  'min': -0.7926941514015198,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).6(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 384, 13, 13],
  'mean': -0.008931996300816536,
  'std': 0.2149755209684372,
  'max': 0.7376869916915894,
  'min': -0.7926941514015198,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).7(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 384, 13, 13],
  'mean': 0.08150506764650345,
  'std': 0.122230164706707,
  'max': 0.7376869916915894,
  'min': 0.0,
  'cnt_zero': 67078,
  'zero_pct': 0.5168115138067061,
  'module': 'model(AlexNet).features(Sequential).7(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 384, 13, 13],
  'mean': 0.08150506764650345,
  'std': 0.122230164706707,
  'max': 0.7376869916915894,
  'min': 0.0,
  'cnt_zero': 67078,
  'zero_pct': 0.5168115138067061,
  'module': 'model(AlexNet).features(Sequential).8(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [256, 384, 3, 3],
  'mean': 1.5411440472234972e-05,
  'std': 0.009823623113334179,
  'max': 0.017010334879159927,
  'min': -0.017010342329740524,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).8(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 1},
 {'shape': [256],
  'mean': 0.0004253720981068909,
  'std': 0.009670977480709553,
  'max': 0.016636833548545837,
  'min': -0.016954980790615082,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).8(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 1},
 {'shape': [2, 256, 13, 13],
  'mean': 0.0047131311148405075,
  'std': 0.08358980715274811,
  'max': 0.33009663224220276,
  'min': -0.3189106583595276,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).8(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 256, 13, 13],
  'mean': 0.0047131311148405075,
  'std': 0.08358980715274811,
  'max': 0.33009663224220276,
  'min': -0.3189106583595276,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).9(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 256, 13, 13],
  'mean': 0.03535669669508934,
  'std': 0.0499359592795372,
  'max': 0.33009663224220276,
  'min': 0.0,
  'cnt_zero': 41035,
  'zero_pct': 0.4742395525147929,
  'module': 'model(AlexNet).features(Sequential).9(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 256, 13, 13],
  'mean': 0.03535669669508934,
  'std': 0.0499359592795372,
  'max': 0.33009663224220276,
  'min': 0.0,
  'cnt_zero': 41035,
  'zero_pct': 0.4742395525147929,
  'module': 'model(AlexNet).features(Sequential).10(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [256, 256, 3, 3],
  'mean': 2.6003770472016186e-05,
  'std': 0.012027072720229626,
  'max': 0.020833326503634453,
  'min': -0.020833313465118408,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).10(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 1},
 {'shape': [256],
  'mean': 0.00011942532728426158,
  'std': 0.012175926938652992,
  'max': 0.020765984430909157,
  'min': -0.02049778774380684,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).10(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 1},
 {'shape': [2, 256, 13, 13],
  'mean': 0.0005038615199737251,
  'std': 0.03571150824427605,
  'max': 0.12614856660366058,
  'min': -0.13716860115528107,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).10(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 256, 13, 13],
  'mean': 0.0005038615199737251,
  'std': 0.03571150824427605,
  'max': 0.12614856660366058,
  'min': -0.13716860115528107,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).11(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 256, 13, 13],
  'mean': 0.014308960177004337,
  'std': 0.02128779888153076,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 43223,
  'zero_pct': 0.4995261649408284,
  'module': 'model(AlexNet).features(Sequential).11(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 256, 13, 13],
  'mean': 0.014308960177004337,
  'std': 0.02128779888153076,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 43223,
  'zero_pct': 0.4995261649408284,
  'module': 'model(AlexNet).features(Sequential).12(MaxPool2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 256, 6, 6],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).features(Sequential).12(MaxPool2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 256, 6, 6],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).features(Sequential)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 256, 6, 6],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).avgpool(AdaptiveAvgPool2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 256, 6, 6],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).avgpool(AdaptiveAvgPool2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 9216],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).classifier(Sequential)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 9216],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).classifier(Sequential).0(Dropout)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 9216],
  'mean': 0.02170110121369362,
  'std': 0.04205140098929405,
  'max': 0.2518007457256317,
  'min': 0.0,
  'cnt_zero': 12475,
  'zero_pct': 0.6768120659722222,
  'module': 'model(AlexNet).classifier(Sequential).0(Dropout)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 9216],
  'mean': 0.02170110121369362,
  'std': 0.04205140098929405,
  'max': 0.2518007457256317,
  'min': 0.0,
  'cnt_zero': 12475,
  'zero_pct': 0.6768120659722222,
  'module': 'model(AlexNet).classifier(Sequential).1(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [4096, 9216],
  'mean': 8.854000839164655e-07,
  'std': 0.006014422979205847,
  'max': 0.010416665114462376,
  'min': -0.010416666977107525,
  'cnt_zero': 1,
  'zero_pct': 2.6490953233506943e-08,
  'module': 'model(AlexNet).classifier(Sequential).1(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 1},
 {'shape': [4096],
  'mean': -4.447995888767764e-05,
  'std': 0.0060094729997217655,
  'max': 0.010400851257145405,
  'min': -0.010413545183837414,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).1(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': -0.00019571068696677685,
  'std': 0.02773861587047577,
  'max': 0.11280506104230881,
  'min': -0.11589439958333969,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).1(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': -0.00019571068696677685,
  'std': 0.02773861587047577,
  'max': 0.11280506104230881,
  'min': -0.11589439958333969,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).2(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': 0.010946482419967651,
  'std': 0.016068648546934128,
  'max': 0.11280506104230881,
  'min': 0.0,
  'cnt_zero': 4088,
  'zero_pct': 0.4990234375,
  'module': 'model(AlexNet).classifier(Sequential).2(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': 0.010946482419967651,
  'std': 0.016068648546934128,
  'max': 0.11280506104230881,
  'min': 0.0,
  'cnt_zero': 4088,
  'zero_pct': 0.4990234375,
  'module': 'model(AlexNet).classifier(Sequential).3(Dropout)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': 0.010910511948168278,
  'std': 0.025273488834500313,
  'max': 0.22561012208461761,
  'min': 0.0,
  'cnt_zero': 6143,
  'zero_pct': 0.7498779296875,
  'module': 'model(AlexNet).classifier(Sequential).3(Dropout)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': 0.010910511948168278,
  'std': 0.025273488834500313,
  'max': 0.22561012208461761,
  'min': 0.0,
  'cnt_zero': 6143,
  'zero_pct': 0.7498779296875,
  'module': 'model(AlexNet).classifier(Sequential).4(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [4096, 4096],
  'mean': 2.2561544028576463e-06,
  'std': 0.00902175810188055,
  'max': 0.01562499813735485,
  'min': -0.01562499813735485,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).4(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 1},
 {'shape': [4096],
  'mean': -0.00025126454420387745,
  'std': 0.009119285270571709,
  'max': 0.01561034843325615,
  'min': -0.015622705221176147,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).4(Linear)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': -0.0001800916506908834,
  'std': 0.018164895474910736,
  'max': 0.0790843740105629,
  'min': -0.06692799180746078,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).4(Linear)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': -0.0001800916506908834,
  'std': 0.018164895474910736,
  'max': 0.0790843740105629,
  'min': -0.06692799180746078,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).5(ReLU)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': 0.007168028503656387,
  'std': 0.010531177744269371,
  'max': 0.0790843740105629,
  'min': 0.0,
  'cnt_zero': 4132,
  'zero_pct': 0.50439453125,
  'module': 'model(AlexNet).classifier(Sequential).5(ReLU)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': 0.007168028503656387,
  'std': 0.010531177744269371,
  'max': 0.0790843740105629,
  'min': 0.0,
  'cnt_zero': 4132,
  'zero_pct': 0.50439453125,
  'module': 'model(AlexNet).classifier(Sequential).6(Linear)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [1000, 4096],
  'mean': 7.572847152914619e-06,
  'std': 0.009020469151437283,
  'max': 0.015624983236193657,
  'min': -0.015624994412064552,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).6(Linear)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 1},
 {'shape': [1000],
  'mean': 0.0005548058543354273,
  'std': 0.008900988847017288,
  'max': 0.015612822026014328,
  'min': -0.015597641468048096,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).6(Linear)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 1},
 {'shape': [2, 1000],
  'mean': 0.0006374760414473712,
  'std': 0.011509544216096401,
  'max': 0.03328176215291023,
  'min': -0.033743541687726974,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).6(Linear)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 1000],
  'mean': 0.0006374760414473712,
  'std': 0.011509544216096401,
  'max': 0.03328176215291023,
  'min': -0.033743541687726974,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 1000],
  'mean': 0.0006374760414473712,
  'std': 0.011509544216096401,
  'max': 0.03328176215291023,
  'min': -0.033743541687726974,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1}]

Return log file as dataframe

er.json_df('init-00_phase-valid_epoch-1.log')
shape mean std max min cnt_zero zero_pct module ts ttype tname n_batch
0 [2, 3, 224, 224] -1.001885 0.577536 -0.000016 -1.999997 0 0.0 model(AlexNet) 2020-03-07 10:37:50 input x 0
1 [2, 3, 224, 224] -1.001885 0.577536 -0.000016 -1.999997 0 0.0 model(AlexNet).features(Sequential) 2020-03-07 10:37:50 input input 0
2 [2, 3, 224, 224] -1.001885 0.577536 -0.000016 -1.999997 0 0.0 model(AlexNet).features(Sequential).0(Conv2d) 2020-03-07 10:37:50 input input 0
3 [64, 3, 11, 11] -0.000152 0.030288 0.052461 -0.052483 0 0.0 model(AlexNet).features(Sequential).0(Conv2d) 2020-03-07 10:37:50 weight weight_0 0
4 [64] 0.003515 0.027836 0.051731 -0.044360 0 0.0 model(AlexNet).features(Sequential).0(Conv2d) 2020-03-07 10:37:50 weight weight_1 0
... ... ... ... ... ... ... ... ... ... ... ... ...
123 [1000, 4096] 0.000008 0.009020 0.015625 -0.015625 0 0.0 model(AlexNet).classifier(Sequential).6(Linear) 2020-03-07 10:37:53 weight weight_0 1
124 [1000] 0.000555 0.008901 0.015613 -0.015598 0 0.0 model(AlexNet).classifier(Sequential).6(Linear) 2020-03-07 10:37:53 weight weight_1 1
125 [2, 1000] 0.000637 0.011510 0.033282 -0.033744 0 0.0 model(AlexNet).classifier(Sequential).6(Linear) 2020-03-07 10:37:53 output output_0 1
126 [2, 1000] 0.000637 0.011510 0.033282 -0.033744 0 0.0 model(AlexNet).classifier(Sequential) 2020-03-07 10:37:53 output output_0 1
127 [2, 1000] 0.000637 0.011510 0.033282 -0.033744 0 0.0 model(AlexNet) 2020-03-07 10:37:53 output output_0 1

128 rows × 12 columns

Latest JSON data

er.latest
[{'shape': [2, 3, 224, 224],
  'mean': -1.001885175704956,
  'std': 0.5775364637374878,
  'max': -1.5735626220703125e-05,
  'min': -1.9999974966049194,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'x',
  'n_batch': 1},
 {'shape': [2, 3, 224, 224],
  'mean': -1.001885175704956,
  'std': 0.5775364637374878,
  'max': -1.5735626220703125e-05,
  'min': -1.9999974966049194,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 3, 224, 224],
  'mean': -1.001885175704956,
  'std': 0.5775364637374878,
  'max': -1.5735626220703125e-05,
  'min': -1.9999974966049194,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).0(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [64, 3, 11, 11],
  'mean': -0.000151715605170466,
  'std': 0.03028801828622818,
  'max': 0.05246129631996155,
  'min': -0.05248286575078964,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).0(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 1},
 {'shape': [64],
  'mean': 0.003515456337481737,
  'std': 0.027836013585329056,
  'max': 0.0517314150929451,
  'min': -0.04436026141047478,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).0(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 1},
 {'shape': [2, 64, 55, 55],
  'mean': 0.058029815554618835,
  'std': 0.6799391508102417,
  'max': 2.8890106678009033,
  'min': -2.7371437549591064,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).0(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 64, 55, 55],
  'mean': 0.058029815554618835,
  'std': 0.6799391508102417,
  'max': 2.8890106678009033,
  'min': -2.7371437549591064,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).1(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 64, 55, 55],
  'mean': 0.2949860095977783,
  'std': 0.4212140142917633,
  'max': 2.8890106678009033,
  'min': 0.0,
  'cnt_zero': 179115,
  'zero_pct': 0.4625903925619835,
  'module': 'model(AlexNet).features(Sequential).1(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 64, 55, 55],
  'mean': 0.2949860095977783,
  'std': 0.4212140142917633,
  'max': 2.8890106678009033,
  'min': 0.0,
  'cnt_zero': 179115,
  'zero_pct': 0.4625903925619835,
  'module': 'model(AlexNet).features(Sequential).2(MaxPool2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 64, 27, 27],
  'mean': 0.6178204417228699,
  'std': 0.5235710144042969,
  'max': 2.8890106678009033,
  'min': 0.0,
  'cnt_zero': 16626,
  'zero_pct': 0.17817644032921812,
  'module': 'model(AlexNet).features(Sequential).2(MaxPool2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 64, 27, 27],
  'mean': 0.6178204417228699,
  'std': 0.5235710144042969,
  'max': 2.8890106678009033,
  'min': 0.0,
  'cnt_zero': 16626,
  'zero_pct': 0.17817644032921812,
  'module': 'model(AlexNet).features(Sequential).3(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [192, 64, 5, 5],
  'mean': 2.920041879406199e-05,
  'std': 0.014425805769860744,
  'max': 0.024999992921948433,
  'min': -0.024999914690852165,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).3(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 1},
 {'shape': [192],
  'mean': 5.584982500295155e-05,
  'std': 0.01449640840291977,
  'max': 0.02486034296452999,
  'min': -0.024976877495646477,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).3(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 1},
 {'shape': [2, 192, 27, 27],
  'mean': 0.005711908917874098,
  'std': 0.4219861924648285,
  'max': 1.3408710956573486,
  'min': -1.5709540843963623,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).3(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 192, 27, 27],
  'mean': 0.005711908917874098,
  'std': 0.4219861924648285,
  'max': 1.3408710956573486,
  'min': -1.5709540843963623,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).4(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 192, 27, 27],
  'mean': 0.1750352382659912,
  'std': 0.24230045080184937,
  'max': 1.3408710956573486,
  'min': 0.0,
  'cnt_zero': 136728,
  'zero_pct': 0.48842592592592593,
  'module': 'model(AlexNet).features(Sequential).4(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 192, 27, 27],
  'mean': 0.1750352382659912,
  'std': 0.24230045080184937,
  'max': 1.3408710956573486,
  'min': 0.0,
  'cnt_zero': 136728,
  'zero_pct': 0.48842592592592593,
  'module': 'model(AlexNet).features(Sequential).5(MaxPool2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 192, 13, 13],
  'mean': 0.2699883282184601,
  'std': 0.29403892159461975,
  'max': 1.3408710956573486,
  'min': 0.0,
  'cnt_zero': 22632,
  'zero_pct': 0.34874260355029585,
  'module': 'model(AlexNet).features(Sequential).5(MaxPool2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 192, 13, 13],
  'mean': 0.2699883282184601,
  'std': 0.29403892159461975,
  'max': 1.3408710956573486,
  'min': 0.0,
  'cnt_zero': 22632,
  'zero_pct': 0.34874260355029585,
  'module': 'model(AlexNet).features(Sequential).6(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [384, 192, 3, 3],
  'mean': -1.0054035556095187e-05,
  'std': 0.013890313915908337,
  'max': 0.02405625395476818,
  'min': -0.024056246504187584,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).6(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 1},
 {'shape': [384],
  'mean': -0.00042058341205120087,
  'std': 0.013936573639512062,
  'max': 0.02394459955394268,
  'min': -0.023925118148326874,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).6(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 1},
 {'shape': [2, 384, 13, 13],
  'mean': -0.008931996300816536,
  'std': 0.2149755209684372,
  'max': 0.7376869916915894,
  'min': -0.7926941514015198,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).6(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 384, 13, 13],
  'mean': -0.008931996300816536,
  'std': 0.2149755209684372,
  'max': 0.7376869916915894,
  'min': -0.7926941514015198,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).7(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 384, 13, 13],
  'mean': 0.08150506764650345,
  'std': 0.122230164706707,
  'max': 0.7376869916915894,
  'min': 0.0,
  'cnt_zero': 67078,
  'zero_pct': 0.5168115138067061,
  'module': 'model(AlexNet).features(Sequential).7(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 384, 13, 13],
  'mean': 0.08150506764650345,
  'std': 0.122230164706707,
  'max': 0.7376869916915894,
  'min': 0.0,
  'cnt_zero': 67078,
  'zero_pct': 0.5168115138067061,
  'module': 'model(AlexNet).features(Sequential).8(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [256, 384, 3, 3],
  'mean': 1.5411440472234972e-05,
  'std': 0.009823623113334179,
  'max': 0.017010334879159927,
  'min': -0.017010342329740524,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).8(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 1},
 {'shape': [256],
  'mean': 0.0004253720981068909,
  'std': 0.009670977480709553,
  'max': 0.016636833548545837,
  'min': -0.016954980790615082,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).8(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 1},
 {'shape': [2, 256, 13, 13],
  'mean': 0.0047131311148405075,
  'std': 0.08358980715274811,
  'max': 0.33009663224220276,
  'min': -0.3189106583595276,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).8(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 256, 13, 13],
  'mean': 0.0047131311148405075,
  'std': 0.08358980715274811,
  'max': 0.33009663224220276,
  'min': -0.3189106583595276,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).9(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 256, 13, 13],
  'mean': 0.03535669669508934,
  'std': 0.0499359592795372,
  'max': 0.33009663224220276,
  'min': 0.0,
  'cnt_zero': 41035,
  'zero_pct': 0.4742395525147929,
  'module': 'model(AlexNet).features(Sequential).9(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 256, 13, 13],
  'mean': 0.03535669669508934,
  'std': 0.0499359592795372,
  'max': 0.33009663224220276,
  'min': 0.0,
  'cnt_zero': 41035,
  'zero_pct': 0.4742395525147929,
  'module': 'model(AlexNet).features(Sequential).10(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [256, 256, 3, 3],
  'mean': 2.6003770472016186e-05,
  'std': 0.012027072720229626,
  'max': 0.020833326503634453,
  'min': -0.020833313465118408,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).10(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 1},
 {'shape': [256],
  'mean': 0.00011942532728426158,
  'std': 0.012175926938652992,
  'max': 0.020765984430909157,
  'min': -0.02049778774380684,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).10(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 1},
 {'shape': [2, 256, 13, 13],
  'mean': 0.0005038615199737251,
  'std': 0.03571150824427605,
  'max': 0.12614856660366058,
  'min': -0.13716860115528107,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).10(Conv2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 256, 13, 13],
  'mean': 0.0005038615199737251,
  'std': 0.03571150824427605,
  'max': 0.12614856660366058,
  'min': -0.13716860115528107,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).features(Sequential).11(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 256, 13, 13],
  'mean': 0.014308960177004337,
  'std': 0.02128779888153076,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 43223,
  'zero_pct': 0.4995261649408284,
  'module': 'model(AlexNet).features(Sequential).11(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 256, 13, 13],
  'mean': 0.014308960177004337,
  'std': 0.02128779888153076,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 43223,
  'zero_pct': 0.4995261649408284,
  'module': 'model(AlexNet).features(Sequential).12(MaxPool2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 256, 6, 6],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).features(Sequential).12(MaxPool2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 256, 6, 6],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).features(Sequential)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 256, 6, 6],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).avgpool(AdaptiveAvgPool2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 256, 6, 6],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).avgpool(AdaptiveAvgPool2d)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 9216],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).classifier(Sequential)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 9216],
  'mean': 0.02180689387023449,
  'std': 0.025604762136936188,
  'max': 0.12614856660366058,
  'min': 0.0,
  'cnt_zero': 6580,
  'zero_pct': 0.3569878472222222,
  'module': 'model(AlexNet).classifier(Sequential).0(Dropout)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 9216],
  'mean': 0.02170110121369362,
  'std': 0.04205140098929405,
  'max': 0.2518007457256317,
  'min': 0.0,
  'cnt_zero': 12475,
  'zero_pct': 0.6768120659722222,
  'module': 'model(AlexNet).classifier(Sequential).0(Dropout)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 9216],
  'mean': 0.02170110121369362,
  'std': 0.04205140098929405,
  'max': 0.2518007457256317,
  'min': 0.0,
  'cnt_zero': 12475,
  'zero_pct': 0.6768120659722222,
  'module': 'model(AlexNet).classifier(Sequential).1(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [4096, 9216],
  'mean': 8.854000839164655e-07,
  'std': 0.006014422979205847,
  'max': 0.010416665114462376,
  'min': -0.010416666977107525,
  'cnt_zero': 1,
  'zero_pct': 2.6490953233506943e-08,
  'module': 'model(AlexNet).classifier(Sequential).1(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 1},
 {'shape': [4096],
  'mean': -4.447995888767764e-05,
  'std': 0.0060094729997217655,
  'max': 0.010400851257145405,
  'min': -0.010413545183837414,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).1(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': -0.00019571068696677685,
  'std': 0.02773861587047577,
  'max': 0.11280506104230881,
  'min': -0.11589439958333969,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).1(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': -0.00019571068696677685,
  'std': 0.02773861587047577,
  'max': 0.11280506104230881,
  'min': -0.11589439958333969,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).2(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': 0.010946482419967651,
  'std': 0.016068648546934128,
  'max': 0.11280506104230881,
  'min': 0.0,
  'cnt_zero': 4088,
  'zero_pct': 0.4990234375,
  'module': 'model(AlexNet).classifier(Sequential).2(ReLU)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': 0.010946482419967651,
  'std': 0.016068648546934128,
  'max': 0.11280506104230881,
  'min': 0.0,
  'cnt_zero': 4088,
  'zero_pct': 0.4990234375,
  'module': 'model(AlexNet).classifier(Sequential).3(Dropout)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': 0.010910511948168278,
  'std': 0.025273488834500313,
  'max': 0.22561012208461761,
  'min': 0.0,
  'cnt_zero': 6143,
  'zero_pct': 0.7498779296875,
  'module': 'model(AlexNet).classifier(Sequential).3(Dropout)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': 0.010910511948168278,
  'std': 0.025273488834500313,
  'max': 0.22561012208461761,
  'min': 0.0,
  'cnt_zero': 6143,
  'zero_pct': 0.7498779296875,
  'module': 'model(AlexNet).classifier(Sequential).4(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [4096, 4096],
  'mean': 2.2561544028576463e-06,
  'std': 0.00902175810188055,
  'max': 0.01562499813735485,
  'min': -0.01562499813735485,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).4(Linear)',
  'ts': '2020-03-07 10:37:52',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 1},
 {'shape': [4096],
  'mean': -0.00025126454420387745,
  'std': 0.009119285270571709,
  'max': 0.01561034843325615,
  'min': -0.015622705221176147,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).4(Linear)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': -0.0001800916506908834,
  'std': 0.018164895474910736,
  'max': 0.0790843740105629,
  'min': -0.06692799180746078,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).4(Linear)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': -0.0001800916506908834,
  'std': 0.018164895474910736,
  'max': 0.0790843740105629,
  'min': -0.06692799180746078,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).5(ReLU)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': 0.007168028503656387,
  'std': 0.010531177744269371,
  'max': 0.0790843740105629,
  'min': 0.0,
  'cnt_zero': 4132,
  'zero_pct': 0.50439453125,
  'module': 'model(AlexNet).classifier(Sequential).5(ReLU)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 4096],
  'mean': 0.007168028503656387,
  'std': 0.010531177744269371,
  'max': 0.0790843740105629,
  'min': 0.0,
  'cnt_zero': 4132,
  'zero_pct': 0.50439453125,
  'module': 'model(AlexNet).classifier(Sequential).6(Linear)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'input',
  'tname': 'input',
  'n_batch': 1},
 {'shape': [1000, 4096],
  'mean': 7.572847152914619e-06,
  'std': 0.009020469151437283,
  'max': 0.015624983236193657,
  'min': -0.015624994412064552,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).6(Linear)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'weight',
  'tname': 'weight_0',
  'n_batch': 1},
 {'shape': [1000],
  'mean': 0.0005548058543354273,
  'std': 0.008900988847017288,
  'max': 0.015612822026014328,
  'min': -0.015597641468048096,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).6(Linear)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'weight',
  'tname': 'weight_1',
  'n_batch': 1},
 {'shape': [2, 1000],
  'mean': 0.0006374760414473712,
  'std': 0.011509544216096401,
  'max': 0.03328176215291023,
  'min': -0.033743541687726974,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential).6(Linear)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 1000],
  'mean': 0.0006374760414473712,
  'std': 0.011509544216096401,
  'max': 0.03328176215291023,
  'min': -0.033743541687726974,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet).classifier(Sequential)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1},
 {'shape': [2, 1000],
  'mean': 0.0006374760414473712,
  'std': 0.011509544216096401,
  'max': 0.03328176215291023,
  'min': -0.033743541687726974,
  'cnt_zero': 0,
  'zero_pct': 0.0,
  'module': 'model(AlexNet)',
  'ts': '2020-03-07 10:37:53',
  'ttype': 'output',
  'tname': 'output_0',
  'n_batch': 1}]

io cleaner

import torch

clean_kv[source]

clean_kv(k, v)

io_cleaner[source]

io_cleaner(**kwargs)

Cleaning up the tensor input/output to a uniformed format of k,v

  • k is the tensor name
  • v is a tensor The inherent idea is to break down list,tuple,set, dictionary ,at any level return dictionary

Test for a very bizarre case of input/output

a = torch.rand(2,2)
b = torch.rand(2,2)
c = torch.rand(2,2)
d = torch.rand(2,2)
e = torch.rand(2,2)
result = io_cleaner(a = a, 
                   b= (b,c),
                   d = {"f":d},
                   e = {"e1":[a,b,{"e2":e}]})
result.keys(), list(is_tensor(v) for v in result.values())
(dict_keys(['a', 'b.tsr0', 'b.tsr1', 'd.f', 'e.e1.tsr0', 'e.e1.tsr1', 'e.e1.tsr2.e2']),
 [True, True, True, True, True, True, True])